Nr. | Practice talk | Presentation | Name | Topic | Mentoring |
---|---|---|---|---|---|
1 | 15.11. | 22.11. | Yelyzaveta Shvoieva | Kalantari, B., & Khachiyan, L. (1996). On the complexity of nonnegative-matrix scaling. | Haoyuan Ma |
2 | 15.11. | 29.11. | Svenja Matthes | Rote, G., & Zachariasen, M. (2007). Matrix scaling by network flow | Haoyuan Ma |
3 | 29.11. | 13.12. | Mahmut Can Yavuz | Chakrabarty, D., & Khanna, S. (2021). Better and simpler error analysis of the Sinkhorn-Knopp algorithm for matrix scaling | Haoyuan Ma |
4 | 13.12. | 20.12. | Henri Saal | Linial, N., Samorodnitsky, A., & Wigderson, A. (2000). A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents | Haoyuan Ma |
5 | 20.12. | 10.01. | Adrian Glubrecht | Garg, A., Gurvits, L., Oliveira, R., & Wigderson, A. (2020). Operator scaling: theory and applications Part 1 | Matthias Kaul |
6 | TBC | 17.01. | David Čadež | Garg, A., Gurvits, L., Oliveira, R., & Wigderson, A. (2020). Operator scaling: theory and applications Part 2 | Matthias Kaul |
7 | 10.01 | 24.01. | Louis Carlin | Garg, A., Gurvits, L., Oliveira, R., & Wigderson, A. (2018). Algorithmic and optimization aspects of Brascamp-Lieb inequalities, via operator scaling | Matthias Kaul |
List of papers
Chakrabarty, D., & Khanna, S. (2021). Better and simpler error analysis of the Sinkhorn-Knopp algorithm for matrix scaling.
Mathematical Programming, 188(1), 395–407. Link | |
Kalantari, B., & Khachiyan, L. (1996). On the complexity of nonnegative-matrix scaling.
Linear Algebra and its applications, 240, 87–103. Link | |
Rote, G., & Zachariasen, M. (2007). Matrix scaling by network flow.
Proceedings of the eighteenth annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 848–854 Link | |
Linial, N., Samorodnitsky, A., & Wigderson, A. (2000).
A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents. Combinatorica, 20(4), 545–568. Link | |
Idel, M. (2016). A review of matrix scaling and Sinkhorn's normal form for matrices and positive maps.
arXiv:1609.06349, Link | |
Garg, A., Gurvits, L., Oliveira, R., & Wigderson, A. (2020). Operator scaling: theory and applications.
Foundations of Computational Mathematics, 20(2), 223–290. Link | |
Garg, A., Gurvits, L., Oliveira, R., & Wigderson, A. (2018). Algorithmic and optimization aspects of Brascamp–Lieb inequalities, via operator scaling.
Geom. Funct. Anal, 28, 100–145. Link |
Further resources
Avi Wigderson (2017). Operator Scaling: Theory, Applications and Connections
lecture notes. Link |