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1. Introduction. An undirected graph G ¼ ðV;EÞ is k-node-connected, or for
short, k-connected if jV j ≥ kþ 1, and after the deletion of any set of at most k− 1 nodes,
the remaining graph is still connected. By Menger’s well-known theorem, a graph is k-
connected if and only if it contains k internally disjoint paths between any two nodes.
The node-connectivity augmentation problem consists of finding a minimum number of
new edges whose addition to a given graph G results in a k-connected graph. The com-
plexity of this problem is a longstanding open question. In this paper we give a min-max
formula and a polynomial time algorithm for augmenting connectivity by one, the spe-
cial case when the input graphG is already (k− 1)-connected. This special case has itself
attracted considerable attention; see, for example, [15], [16], [12], [18], [17].

Besides node-connectivity, one may study edge-connectivity as well, and both aug-
mentation problems can also be addressed for directed graphs. The other three among
these four basic connectivity augmentation problems were solved before now: undirected
edge-connectivity by Watanabe and Nakamura [22], directed edge-connectivity by
Frank [6], and directed node-connectivity by Frank and Jordán [9].

For the undirected node-connectivity version, the best previously known result is
due to Jackson and Jordán [14]. They gave a polynomial time algorithm for finding an
optimal augmentation for any fixed k. The running time is bounded by OðjV j5 þ
f ðkÞjV j3Þ, where f ðkÞ is an exponential function of k. For some special classes of graphs
they prove even stronger results: for example, the running time of the algorithm is poly-
nomial in jV j if the minimum degree is at least 2k− 2. Liberman and Nutov [18] gave a
polynomial time algorithm for augmenting connectivity by one for the graphs satisfying
the following property: there exists a set B ⊆ V with jBj ¼ k− 1 so that G − B has at
least k connected components. (It can be decided in polynomial time whether a graph
contains such a set; see Cheriyan and Thurimella [3].)

Prior to these results, the cases k ¼ 2, 3, 4 were solved by Eswaran and Tarjan [4],
Watanabe and Nakamura [23], and Hsu [12], respectively. For k ¼ jV j− 2 it is easy to
verify that connectivity augmentation is equivalent to finding a maximum matching in
the complement graph of G. Similarly, the case k ¼ jV j− 3 is equivalent to finding a
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maximum square-free 2-matching in the complement. This is still open; however,
augmentation by one (or, equivalently, finding a maximum square-free 2-matching
in a subcubic graph) was recently solved by Bérczi and Kobayashi [1]; see also [2].

It is straightforward to give a 2-approximation for connectivity augmentation by
replacing each edge by two oppositely directed edges, and using that directed node-con-
nectivity can be augmented optimally (see [9]). For augmenting connectivity by one,
Jordán [15], [16] gave an algorithm finding an augmenting edge set larger than the op-
timum by at most dk−2

2 e. Jackson and Jordán [13] extended this result for general con-
nectivity augmentation with an additive term of dkðk−1Þþ4

2 e. (The running time of these
algorithms can be bounded by polynomials of jV j.)

Let us now formulate our theorem, conjectured by Frank and Jordán [8] in 1994. In
the (k− 1)-connected graph G ¼ ðV;EÞ, a subpartition X ¼ ðX1; : : : ; XtÞ of V with
t ≥ 2 is called a clump if jV −

S
Xij ¼ k− 1 and E contains no edge between different

setsXi. The setsXi are called the pieces ofX while jX j is used to denote t, the number of
pieces. If t ¼ 2, then X is a small clump, while for t ≥ 3 it is a large clump.

An edge uv ∈ ðV2 Þ connects X if u and v lie in different pieces of X .1 Two clumps are
said to be independent if there is no edge in (V2 ) connecting both. The following straight-
forward claim gives a reformulation of these definitions.

CLAIM 1.1. Let X ¼ ðX1; : : : ; XtÞ and Y ¼ ðY 1; : : : ; Y hÞ be two clumps.
(i) X and Y are dependent if and only if there exists indices 1 ≤ a, b ≤ t, 1 ≤ c,

d ≤ h, a ≠ b, c ≠ d with Xa ∩ Yc ≠ ∅, Xb ∩ Yd ≠ ∅.
(ii) X andY are independent if and only if either at most one piece ofX intersects

at least one piece of Y , or at most one piece of Y intersects at least one piece
of X . ▯

As an example, consider G ¼ Kk−1;k−1, the complete bipartite graph on two color
classes of size k− 1. The subpartition consisting of singleton nodes in one color class
forms a clump of size k− 1; the two clumps corresponding to the two color classes
are independent.

Clumps are defined in order to tackle node-cuts in undirected graphs. Assume B ⊆
V is a node-cut in G with jBj ¼ k− 1; that is, V − B has t ≥ 2 connected components.
The components of V − B form a clump, and any partition of these components to at
least two sets forms a clump as well, since in the definition, pieces are not required to be
connected. In order to make G k-connected, we have to add at least t− 1 edges between
different components of V − B. For t ¼ 2, an arbitrary edge suffices between the two
components; however, the situation is more complicated if t ≥ 3. Such a set B is often
called separator in the literature, and shredder if t ≥ 3.

A set B of clumps is independent if any two clumps in B are independent; that is,
every edge in (V2 ) connects at most one clump in B. B is semi-independent if every edge in
(V2 ) connects at most two clumps in B.

DEFINITION 1.2. By a grove we mean a subpartition Π ¼ fB0;B1; : : : ;Blg of clumps
satisfying the following properties.

(1) B0 is a set of arbitrary clumps, while B1; : : : ;Bl are sets of small clumps. B0

might be empty, and l ¼ 0 is allowed.
(2) Bi is semi-independent for i ¼ 1; : : : ;l.
(3) If X ∈ Bi, Y ∈ Bj, and i ≠ j or i ¼ j ¼ 0, then X and Y are independent.

Let us define the deficiency of Π by

1By (V2 ) we denote the set of all undirected edges onV , whileV 2 stands for the set of all arcs (directed edges)
on V .
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defðΠÞ ¼
X
X∈B0

ðjX j− 1Þ þ
Xl
i¼1

�jBij
2

�
:

For a (k− 1)-connected graphG ¼ ðV;EÞ, let τðGÞ denote the minimum number of
edges whose addition makes G k-connected, and let νðGÞ denote the maximum value of
defðΠÞ over all groves Π.

THEOREM 1.3. Let G ¼ ðV;EÞ be a (k− 1)-connected graph with jV j ≥ kþ 1. Then
νðGÞ ¼ τðGÞ.

The theorem is illustrated in Figure 1.1. Let us now prove the easy direction
νðGÞ ≤ τðGÞ. Let Π be an arbitrary grove. We need at least jX j− 1 edges connecting
each clump X in Π. By property (3), an edge cannot connect clumps in different Bi’s.
The clumps in B0 being pairwise independent, the first term in defðΠÞ gives a lower
bound on the number of edges needed to connect the clumps in B0. For i ≥ 1, each
Bi is a semi-independent set of small clumps; hence an edge may connect at most
two of them. Therefore, we need at least djBij

2 e edges to connect all clumps in Bi. (Notice
that jBij ¼

P
X∈Bi
ðjX j− 1Þ since all clumps in Bi are small.) The theorem states that

νðGÞ ≤ τðGÞ holds indeed with equality.
The algorithm uses a simple dual scheme based on this theorem. We construct a

subroutine determining the dual optimum value νðGÞ. Given that, the algorithm pro-
ceeds as follows. First compute νðGÞ, and let J ¼ ðV2 Þ− E be the complement of E. In
each step choose an edge e ∈ J , compute νðG þ eÞ, and remove e from J . If
νðG þ eÞ ¼ νðGÞ− 1, then add e to E; otherwise keep the same G. Note that Theo-
rem 1.3 ensures the existence of an edge e with νðG þ eÞ ¼ νðGÞ− 1.

Both the proof and the algorithm are motivated by the algorithm given by Frank
and the author [11] for augmenting directed node-connectivity by one. Let us now state
the min-max formula for this problem. In a digraph D ¼ ðV;AÞ, an ordered pair
ðX−; XþÞ of disjoint nonempty subsets of V is called a one-way pair if
jV − ðX− ∪ XþÞj ¼ k− 1 and there is no arc in A from X− to Xþ. An arc uv ∈ V 2

FIG. 1.1. Let G be the graph on the figure with the addition of a complete bipartite graph between VA and
VB, and let k ¼ 8. G is 7-connected, and it can be made 8-connected by adding the five edges a1a3, a2a4, a3a5,
b3b4, and b4b5. Two clumps ðfa1g; fa3; a4gÞ and ðfb3g; fb4g; fb5gÞ are shown in the figure. Π ¼ fB0;B1g is a
grove with defðΠÞ ¼ 5 for B0 ¼ fðfb3g; fb4g; fb5gÞg and B1 ¼ fðfa1g; fa3; a4gÞ; ðfa2g; fa4; a5gÞ;
ðfa3g; fa5; a1gÞ; ðfa4g; fa1; a2gÞ; ðfa5g; fa2; a3gÞg.
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covers ðX−; XþÞ if u ∈ X−, v ∈ Xþ, and two one-way pairs are independent if they can-
not be covered by the same arc.

THEOREM 1.4 (see [9]). For a (k− 1)-connected digraph D ¼ ðV;AÞ with
jV j ≥ kþ 1, the minimum number of new arcs whose addition results in a k-connected
digraph equals the maximum number of pairwise independent one-way pairs.

Let us briefly outline the argument of [11]. A natural partial order ≼ can be defined
on the set of one-way pairs: let X ¼ ðX−; XþÞ ≼ Y ¼ ðY−; YþÞ if X− ⊆ Y−, Xþ ⊇ Yþ.
A subset K of one-way pairs is called cross-free if any two nonindependent pairs inK are
comparable w.r.t. ≼; such a K maximal for inclusion is called a skeleton. The two main
ingredients of the proof are as follows: (i) for a cross-free K, the maximum number of
pairwise independent one-way pairs in K along with an arc set F of the same cardinality
covering all one-way pairs inK can be determined using Dilworth’s theorem on finding a
maximum antichain and a minimum chain cover of a poset; (ii) an arc set F covering all
one-way pairs in a skeleton K can be transformed to an arc set F  0 of the same cardinality
covering every one-way pair in D.

Our proof for Theorem 1.3 will roughly follow the same lines. Although no natural
partial order can be defined on the set of clumps, we define nestedness in section 2 as a
natural analogue to comparability. A cross-free system will be a set of clumps so that any
two nonindependent clumps are nested, and by skeleton we mean a maximal cross-free
system. For a cross-freeK, we will be able to determine an edge set F covering all clumps
in K along with a grove with deficiency jF j, consisting of clumps in K. Instead of Dil-
worth’s theorem, we apply a reduction to Fleiner’s theorem [5] on covering a symmetric
poset by symmetric chains. For part (ii), the argument of [11] is adapted with minor
modifications.

While Dilworth’s theorem can be derived from the König–Hall theorem on finding a
maximum matching in bipartite graphs, Fleiner’s theorem may be deduced from the
Berge–Tutte theorem on the size of a maximum matching in general graphs. The rela-
tion between directed and undirected connectivity augmentation is somewhat analo-
gous: for example, the formula in Theorem 1.3 involves parity. This is a reason why
the strikingly simple proof of Theorem 1.4 by Frank and Jordán [9] cannot be adapted
for the undirected case.

Another difficulty is that in contrast to one-way pairs, clumps may have more than
two pieces. Fortunately, it turns out that large clumps are nested with every other clump
they are dependent with. Therefore, although large clumps will cause certain difficulties
in the first part of the proof, they play only a minor role in the second part.

The paper is organized as follows. We introduce the necessary concepts and prove
some basic claims in section 2. Section 3 contains the proof of Theorem 1.3, while the
algorithm is given in section 4. The minimum-cost version for node-induced cost func-
tions is also described in this section. Finally, section 5 discusses possible further di-
rections.

2. Preliminaries. For the undirected graph G ¼ ðV;EÞ and a subset B ⊆ V ,
dðBÞ ¼ dGðBÞ ¼ dEðBÞ denotes the degree of B, and NðBÞ ¼ NGðBÞ the set of neigh-
bors of B, that is, fv ∈ V − B; ∃u ∈ B; uv ∈ Eg. For subsets B, C ⊆ V , dðB;CÞ is the
number of edges between B − C and C − B. For u ∈ V , u sometimes refers to the set
fug; for example, B þ v and B − v denote the sets B ∪ fvg and B − fvg, respectively.
Similar notation is used concerning edges. Let n ¼ jV j, the number of nodes.

Let us list some definitions concerning clumps. For a clump X ¼ ðX1; X2; : : : ; XtÞ,
let NX ¼ V −

S
i Xi. Observe that for 1 ≤ i ≤ t, NðXiÞ ¼ NX , since G is (k− 1)-

connected. X is called basic if all pieces Xi are connected. The clump Y is derived from
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the basic clump X if each piece of Y is the union of some pieces of X . By DðXÞ we mean
the set of all clumps derived from X , while D2ðXÞ is used for the set of small clumps
derived from X . Let C denote the set of all basic clumps. For a set F ⊆ C, DðFÞ denotes
the union of the setsDðXÞwithX ∈ F . The clumps being in the sameDðXÞ can easily be
characterized (see, e.g., [15], [16], [18]).

CLAIM 2.1. (i) Two clumps X and Y are derived from the same basic clump if and
only if NX ¼ NY . (ii) If two basic clumps X and Y have a piece in common, then
X ¼ Y . ▯

We say that the edge set F covers the clump X if we obtain a connected graph from
ðV;FÞ by deleting NX and shrinking each piece Xi to a single node. Note that at least
jX j− 1 edges in F connecting X are needed to cover X . However, if X is a small clump,
then F covers X if and only if F connects X . We say that F covers (resp., connects)
H ⊆ DðCÞ if it covers (resp., connects) all clumps in H. Clearly, F is an augmenting
edge set if and only if it covers DðCÞ. The following simple claim shows that in order
to cover a set F of clumps, it suffices to connect every small clump derived from the
members of F .

CLAIM 2.2. For an edge set F ⊆ ðV2 Þ and F ⊆ C, the following three statements are
equivalent: (i) F covers F ; (ii) F covers DðF Þ; and (iii) F connects D2ðF Þ. ▯

We have already defined when two clumps are independent: if no edge in (V2 ) con-
nects both. Two clumps are dependent if they are not independent. In the rest of the
section we introduce the concept of nestedness of clumps and uncrossing for dependent
clumps, and furthermore we define crossing and cross-free subsets of clumps. The reader
may find it useful to compare these to the concepts related to one-way pairs in the case of
directed connectivity augmentation as in [9], which will also be defined later in this sec-
tion, as we will also use them directly. A major difference between the undirected and
directed setting is that, in the directed case, a natural partial order can be defined for the
one-way pairs, which cannot be done for clumps. Nestedness will be the natural analogue
of comparability for clumps.

We say that two clumpsX ¼ ðX1; : : : ; XtÞ andY ¼ ðY 1; : : : ; Y hÞ are nested ifX ¼
Y or for some 1 ≤ a ≤ t and 1 ≤ b ≤ h, Yi ⊈ Xa for all i ≠ b and Xj ⊈ Yb for all j ≠ a
(see Figure 2.1). We call Xa the dominant piece of X w.r.t. Y , and Yb the dominant
piece of Y w.r.t. X . The following important lemma shows that a large basic clump is
automatically nested with any other basic clump (see also [18]).

LEMMA 2.3. Assume X is a large basic clump and Y is an arbitrary basic clump. If X
and Y are dependent, then X and Y are nested.

To prove this, first we need two simple claims.
CLAIM 2.4. For the basic clumps X ¼ ðX1; : : : ; XtÞ and Y ¼ ðY 1; : : : ; Y hÞ,

Xi ∩ NY ¼ ∅ implies Xi ⊆ Yj for some 1 ≤ j ≤ h. ▯
CLAIM 2.5. Let X ¼ ðX1; : : : ; XtÞ and Y ¼ ðY 1; : : : ; Y hÞ be two different clumps

both basic or both small. If Xs ⊈ Yb for some 1 ≤ s ≤ t, 1 ≤ b ≤ h, then X and Y
are nested with Yb being the dominant piece of Y w.r.t. X .

Proof. Consider an l ≠ b. Xs ⊆ Yb implies dðXs;Y lÞ ¼ 0; thus Y l ∩ NX ¼ ∅.
Hence Y l ⊆ Xa for some a ≠ s follows either by Claim 2.4 or by t ¼ 2. We claim that
a is always the same independently from the choice of l. Indeed, assume that for some
l 0 ∈= fb;lg, Y l 0 ⊆ Xa 0 with a 0 ≠ a.

The same argument applied with changing the role of X and Y (by making use of
Y l ⊆ Xa) shows that Xa 0 ⊆ Yj for some j, giving Y l  0 ⊆ Yj, a contradiction. Xi ⊆ Yb

for i ≠ a can be proved by changing the role of X andY again. Thus X andY are nested
with dominant pieces Xa and Yb. ▯
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Proof of Lemma 2.3. The dependence implies X1 ∩ Y 1 ≠ ∅, X2 ∩ Y 2 ≠ ∅ by pos-
sibly changing the indices. Let xi ¼ jNY ∩ Xij, yi ¼ jNX ∩ Yij, n0 ¼ jNX ∩ NY j. Then
k− 1 ≤ jNðX1 ∩ Y 1Þj ≤ n0 þ x1 þ y1. Since k− 1 ¼ jNX j ¼ n0 þ

P
iyi, this impliesP

i≠1yi ≤ x1 and, similarly,
P

i≠1xi ≤ y1. The same argument for X2 ∩ Y 2 givesP
i≠2yi ≤ x2 and

P
i≠2xi ≤ y2.

Thus we have xi ¼ yi ¼ 0 for i ≥ 3. This gives X3 ∩ NY ¼ ∅, and hence X3 ⊆ Yi

for some i by Claim 2.4. The nestedness of X and Y follows by the previous claim. ▯
The notion of one-way pairs from the directed connectivity augmentation setting

will also be used. A one-way pair K ¼ ðK−; KþÞ is an ordered pair of disjoint sets with
jV − ðK− ∪ KþÞj ¼ k− 1 and dðK−; KþÞ ¼ 0, or equivalently, the subpartition consist-
ing of K− and Kþ forms a (small) clump. K− is called the tail, while Kþ the head of K .
For each small clump X , there are two corresponding one-way pairs, called the orienta-
tions of X . For a large clumpX , we mean by the orientations ofX the orientations of the
small clumps in D2ðXÞ.

For a one-way pair K , K ̲ denotes the corresponding small clump. An arc (directed
edge) uv ∈ V 2 covers the one-way pair K ¼ ðK−; KþÞ if u ∈ K−, v ∈ Kþ. Note that if
the arc uv coversK , then vu does not cover it. If an edge uv ∈ ðV2 Þ connects a small clump
X , then the arc uv ∈ V 2 covers exactly one of its two orientations (in the directed sense).
For the one-way pair K ¼ ðK−; KþÞ, its reverse is K

 ¼ ðKþ; K−Þ.
Two one-way pairs are independent if no arc covers both, or, equivalently, if either

their tails or their heads are disjoint. Two nonindependent set pairs are called dependent.
Let us define a partial order ≼ on the one-way pairs as follows. For one-way pairs K ¼
ðK−; KþÞ and L ¼ ðL−; LþÞ,K ≼ L ifK− ⊆ L−,Kþ ⊇ Lþ. For dependent one-way pairs
K and L, let K ∧ L ¼ ðK− ∩ L−; Kþ ∪ LþÞ and K ∨ L ¼ ðK− ∪ L−; Kþ ∩ LþÞ. A sim-
ple argument (e.g., see [9]) shows that these are also one-way pairs.

Take two dependent small clumps X ¼ ðX1; X2Þ and Y ¼ ðY 1; Y 2Þ. We say that
their orientations LX and LY are compatible if they are dependent one-way pairs.
Clearly, any two dependent one-way pairs admit compatible orientations, and if LX

and LY are compatible, then so are LX
 �

and LY
 �

. X and Y are strongly dependent if Xi ∩
Yj ≠ ∅ for every i, j ∈ f1; 2g. X and Y are simply dependent if dependent but not
strongly dependent (see Figure 2.2). The following claim is easy to see.

CLAIM 2.6. Let X and Y be two small clumps, and let LX be an orientation of X .
(i) X and Y are simply dependent if and only if there is exactly one orientation

LY of Y compatible with LX .
(ii) X and Y are strongly dependent if and only if both orientations of Y are

compatible with LX .
(iii) X and Y are nested if and only if Y has an orientation LY with LY ≼ LX or

LY ≽ LX . ▯
We are ready to define uncrossing of basic clumps. By uncrossing the dependent

one-way pairs K and L we mean replacing them by K ∧ L and K ∨ L (which coincide
with K and L if K and L are comparable). For dependent basic clumps X and Y , we
define a set ΥðX;Y Þ consisting of two or four pairwise nested clumps in the analogous
sense. If X and Y are nested, then let ΥðX;Y Þ ¼ fX;Yg. By Lemma 2.3, this is always
the case if one of X and Y is large. For the small basic clumps X and Y , consider some
compatible orientations LX and LY . If X and Y are simply dependent, then let
ϒðX;Y Þ ¼ fLX ∧ LY ; LX ∨ LYg. (Altough there are two possible choices for LX and
LY , the set ϒðX;Y Þ will be the same.) If they are strongly dependent, then LX is also
compatible with LY

 �
. In this case let ϒðX;Y Þ ¼ fLX ∧ LY ; LX ∨ LY ; LX LY

 �
; LX ∨ LY

 �g.
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It is easy to see that the clumps inϒðX;Y Þ are nested withX andY and with each other
in both cases. The following property is straightforward.

CLAIM 2.7. For dependent basic clumps X , Y , if an edge uv connects a clump in
ϒðX;Y Þ, then it connects at least one of X and Y . ▯

We say that two clumps are crossing if they are dependent but not nested. Again by
Lemma 2.3, two basic clumps may be crossing only if both are small. A subset F ⊆ C is
called crossing if for any two dependent clumps X , Y ∈ F , ϒðX;Y Þ ⊆ DðF Þ. (The rea-
son for assuming containment in DðFÞ instead of F is that ϒðX;Y Þmight contain non-
basic clumps.) Note that C itself is crossing. For a crossing systemF and a clumpK ∈ F ,
let F ÷ K denote the set of clumps in F independent from or nested with K . Similarly,
for a subset K ⊆ F , F ÷ K denotes the set of clumps in F not crossing any clump in K.
An F ⊆ C is cross-free if it contains no crossing clumps; that is, any two dependent
clumps in F are nested. (Note that a cross-free system is crossing as well.) A cross-free
K is called a skeleton of F if it is maximal cross-free in F ; that is, F ÷ K ¼ K. By Lem-
ma 2.3, a skeleton of C should contain every large clump.

LEMMA 2.8. For a crossing system F ⊆ C and K ∈ F , F ÷ K is also a crossing
system.

Proof. Let F  0 ¼ F ÷ K . If K is large, then F  0 ¼ F by Lemma 2.3; therefore K is
assumed to be small in what follows. Let us fix an orientation LK of K . Take crossing
basic clumps X , Y ∈ F  0. Again by Lemma 2.3, if a clump in ϒðX;Y Þ is not basic, then it
is automatically in DðF  0Þ. We consider all possible cases as follows.

(I) Both are nested with K . Choose orientations LX and LY compatible with LK

(but not necessarily with each other).
(a)

LX ≼ LK ≼ LY or LY ≼ LK ≼ LX , then X and Y are nested by Claim 2.6(iii).
(b)

Let LX , LY ≼ LK . If LX and LY are dependent, then LX ∧ LY , LX ∨ LY ≼ LK . If LX and
LY
 �

are dependent, then LX ∧ LY
 �

≼ LK and LK
 �

≼ LX ∨ LY
 �

. These arguments
show ϒðX;Y Þ ⊆ DðF  0Þ.

(c)
In the case of LX , LY ≽ LK , the claim follows analogously.

(II) BothX andY are independent fromK . By Claim 2.7, all clumps inϒðX;Y Þ are
independent from K .

FIG. 2.1. The nested clumps X ¼ ðX1; X2; X3Þ and Y ¼ ðY 1; Y 2; Y 3; Y 4Þ with dominant pieces X1

and Y 1.
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(III) One of them, say X , is nested with K , and the other, Y , is independent from K .
Let LX be an orientation of X compatible with LK , and letLY be an orientation
of Y compatible with LX . By symmetry, we may assume LX ≼ LK . Now
LX ∧ LY ≼ LK , and we show that LX ∨ LY is independent from K . LY being
an arbitrary orientation compatible with LX , these again imply ϒðX;Y Þ ⊆
DðF  0Þ. LY and LK are independent, but L−

K ∩ L−
Y ≠ ∅. Thus LþK ∩ LþY ¼ ∅,

and hence the one-way pairs LX ∨ LY and LK are independent. We also need
to show that LX ∨ LY

 �����
and LK are independent. Indeed, their dependence would

imply LþY ∩ L−
K ≠ ∅, L−

Y ∩ LþK ≠ ∅, contradicting the independence of K and
Y . ▯

Finally, the sequence K1; K2; : : : ; Kl of clumps is called a chain if they admit or-
ientations L1; L2; : : : ; Ll with L1 ≼ L2 ≼ : : : ≼ Ll. If u ∈ L−

1 , v ∈ Lþl , then the edge uv
connects all members of the chain.

3. Proof of Theorem 1.3. For a crossing system F ⊆ C, let τðFÞ denote the mini-
mum cardinality of an edge set covering F . Let νðF Þ denote the maximum of defðΠÞ
over groves consisting of clumps in DðF Þ. First, we give the proof of the following slight
generalization of Theorem 1.3 based on two lemmas proved in the following subsections.

THEOREM 3.1. For a crossing system F ⊆ C, νðF Þ ¼ τðFÞ.
The two lemmas are as follows.
LEMMA 3.2. For a cross-free system F , νðFÞ ¼ τðFÞ.
LEMMA 3.3. For a crossing system F and a K ∈ F , if an edge set F covers F ÷ K ,

then there exists an F  0 covering F with jF  0j ¼ jF j, and furthermore dF  0 ðvÞ ¼ dF ðvÞ for
every v ∈ V .

Proof of Theorem 3.1. ν ≤ τ is straightforward. The proof of ν ≥ τ is by induction
on jF j. If F is cross-free, we are done by Lemma 3.2. Otherwise, consider two crossing
clumpsK ,K  0 ∈ F and letF  0 ¼ F ÷ K , a crossing system by Lemma 2.8. AsK  0 ∈= F  0, we
may apply the inductive statement forF  0 giving a groveΠ and an edge set F coveringF  0

with defðΠÞ ¼ jF j. The proof is finished using Lemma 3.3. ▯

FIG. 2.2. Simply dependent one-way pairs (a), and strongly dependent ones (b).
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The following theorem may be seen as a reformulation of this proof; however, it will
be more convenient for the aim of the algorithm and to handle the minimum-cost version
for node-induced cost functions.

THEOREM 3.4. For a crossing system F ⊆ C and a skeleton K of F , νðKÞ ¼ νðF Þ.
Furthermore, if an edge set F coversK, then there exists an F  0 coveringF with jF  0j ¼ jF j
and dF  0 ðvÞ ¼ dF ðvÞ for every v ∈ V .

Proof. Let K ¼ fK1; : : : ; Klg. Let F 0 ¼ F and for i ¼ 1; : : : ;l, let F i ¼ F ÷
fK1; : : : ; Kig. Lemma 2.8 implies that F i is a crossing system as well. Fl ¼ K since
K is a skeleton. By Lemma 3.2, K admits a cover Fl with jFlj ¼ τðKÞ ¼ νðKÞ. Applying
Lemma 3.3 inductively for F i−1,Ki and Fi for i ¼ l;l− 1; : : : ; 1, we get a cover Fi−1 of
F i−1 with jFi−1j ¼ jFlj. Finally, F0 is a cover of F ¼ F 0, and hence νðFÞ ≤ jF0j ¼
jFlj ¼ νðKÞ, implying the first part of the theorem. The identity of the degree sequences
follows by the second part of Lemma 3.3.

3.1. Covering cross-free systems. This section is devoted to the proof of Lem-
ma 3.2. The analogous statement in the case of directed connectivity augmentation sim-
ply follows by Dilworth’s theorem, which is a well-known consequence of the König–Hall
theorem on the size of a maximummatching in a bipartite graph. In contrast, Lemma 3.2
is deduced from Fleiner’s theorem, which is proved via a reduction to the Berge–Tutte
theorem on maximum matchings in general graphs.

We need the following notion to formulate Fleiner’s theorem. A triple P ¼
ðU;≼;MÞ is called a symmetric poset if ðU;≼Þ is a finite poset andM is a perfect match-
ing on U with the property that u ≼ v and uu 0, vv 0 ∈ M implies u 0 ≽ v 0. The edges of M
are called matches. A subset fu1v1; : : : ; ukvkg ⊆ M is called a symmetric chain if u1 ≼
u2 ≼ : : : ≼ uk (and thus v1 ≽ v2 ≽ : : : ≽ vk). The symmetric chains S1; S2; : : : ; St cover
P if M ¼ S

Si.
A set L ¼ fL1; L2 : : : ; Llg of disjoint subsets of M forms a legal subpartition if

uv ∈ Li, u 0v 0 ∈ Lj, u ≼ u 0 yields i ¼ j, and no symmetric chain of length three is con-
tained in any Li. The value of L is valðLÞ ¼P

idjLij
2 e.

THEOREM 3.5 (see Fleiner [5]). Let P ¼ ðU;≼;M Þ be a symmetric poset. The mini-
mum number of symmetric chains covering P is equal to the maximum value of a legal
subpartition of P.

Note that the max ≤ min direction follows easily since a symmetric chain may con-
tain at most two matches belonging to one class of a legal subpartition. This theorem
gives a common generalization of Dilworth’s theorem and of the well-known min-max
formula on the minimum edge cover of a graph (a theorem equivalent to the Berge–
Tutte theorem).

First we show that Lemma 3.2 is a straightforward consequence if F contains only
small clumps. Consider the cross-free family F of clumps, and let U be the set of all
orientations of one-way pairs in F . The matches in M consist of the two orientations
of the same clump, while ≼ is the usual partial order on one-way pairs. A symmetric
chain corresponds to a chain of clumps. Since all clumps in a chain can be connected
by a single edge, a symmetric chain cover gives a cover of F of the same size. On the
other hand, consider a legal subpartition L ¼ fL1; L2 : : : ; Llg. Define the grove
Π ¼ fB0;B1; : : : ;Blg with B0 ¼ ∅ and Bi consisting of the clumps corresponding to
the matches in Li for i ¼ 1; : : : ;l. The independence of clumps contained in different
Bi’s follows by Claim 2.6, since poset elements in different Li’s are independent. The
semi-independece of each Bi follows by the following claim.

CLAIM 3.6. If an edge uv ∈ ðV2 Þ connects three small clumps in a cross-free systemF ,
then these clumps form a chain.
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Proof. LetX ,Y , Z be the three clumps. Let us denote the part ofX containing u by
X1 and the one containing v by X2; let Y ¼ ðY 1; Y 2Þ and Z ¼ ðZ 1; Z2Þ in the analogous
sense. Clearly, any two clumps among X , Y , and Z are dependent, hence nested. We
show that the sets X1, Y 1, Z 1 are pairwise comparable and thus form a chain; then we
are done by Claim 2.5. Indeed, X1 ∩ Y 1 ≠ ∅ since it contains u. If they are not compar-
able, then X1 − Y 1, Y 1 − X1 ≠ ∅; thus X1 and Y 1 should be the dominant pieces of X
and Y w.r.t. the other. Consequently, v ∈ X2 ⊆ Y 1, a contradiction. ▯

Let us now turn to the general case whenF may contain large clumps as well. For an
arbitrary set B ⊆ V , let B� ¼ V − ðB ∪ NðBÞÞ. An edge set F pseudocovers the clump
X ¼ ðX1; : : : ; XtÞ if F contains at least jX j− 1 edges connecting X , and furthermore
each clump ðXi; X

�
i Þ is connected for i ¼ 1; : : : ; t. (Note that X�i ¼

S
j≠i Xj.) F pseudo-

covers F if it pseudocovers every X ∈ F . Although a pseudocover is not necessarily a
cover, the following lemma shows that it can be transformed into a cover of the
same size.

LEMMA 3.7. If F is a pseudocover of F , then there exists an edge set H covering F
with jF j ¼ jH j and dH ðvÞ ¼ dF ðvÞ for every v ∈ V .

Proof. We are done if F covers all clumps in F . Otherwise, consider a clump X ∈ F
pseudocovered but not covered. X is large, since a pseudocovered small clump is auto-
matically covered. Let F ∕ X be the graph obtained from ðV;FÞ by deleting NX and
shrinking each Xi to a single node. Let cFðXÞ denote the number of connected compo-
nents of F ∕ X . Note that F covers X if and only if cF ðXÞ ¼ 1.

Since X is connected by at least jX j− 1 edges of F , there is an edge e ¼ x1y1 ∈ F
connecting X with cF ðXÞ ¼ cF−eðXÞ. Each ðXi; X

�
i Þ is connected; hence there exists an

edge x2y2 ∈ F connecting X with x2y2 being in a component of F ∕ X different from
the one containing x1y1. Let F  0 ¼ F − fx1y1; x2y2g þ fx1y2; x2y1g. Clearly, cF  0 ðXÞ ¼
cF ðXÞ− 1. We show that cF  0 ðY Þ ≤ cFðY Þ for every Y ∈ F −X ; hence by a sequence
of such steps we finally arrive at an H covering F .

Indeed, assume cF  0 ðY Þ > cFðY Þ for some Y ∈ F . X and Y are dependent since at
least one of x1y1 and x2y2 connects both. By Lemma 2.3, X and Y are nested; let Xa and
Yb denote their dominant pieces. The nodes x1, y1, x2, y2 lie in four different pieces of X ,
and thus at least three of them are contained in Yb. Consequently, cF  0 ðY Þ ¼ cFðY Þ
yields a contradiction. ▯

In what follows, we show how a pseudocover F of F can be found based on a re-
duction to Fleiner’s theorem. For a basic clump X ¼ ðX1; : : : ; XtÞ, let uX

i ¼ ðXi; X
�
i Þ,

vXi ¼ ðX�i ; XiÞ, and UX ¼ fuX
i ; v

X
i ∶ i ¼ 1; : : : ; tg. Let U ¼ S

X∈F UX . We say that the
members of UX are of type X . Let the matching M consist of the matches uX

i v
X
i ; such a

match is called an X-match.
If X is small (t ¼ 2), then uX

1 ¼ vX2 and vX1 ¼ uX
2 ; thus jUX j ¼ 2. If X is large, then

jUX j ¼ 2t. In this case, let uX
1 and vX1 be called the special one-way pairs w.r.t. X . uX

1 v
X
1

is called a special match. Note that it matters here which piece of X is denoted by X1

(arbitrarily chosen though). Let the partial order ≼ 0 onU be defined as follows. If x and y
are one-way pairs of different type, then let x ≼ 0 y if and only if x ≼ y for the standard
partial order ≼ on one-way pairs. If x and y are both of type X for a large clump X , then
let x ≼ 0 y if either x ¼ uX

1 , y ¼ vXi , or x ¼ uX
i , y ¼ vX1 for some i > 1. In other words, ≼ 0 is

the same as ≼ except that x and y are incomparable whenever x and y are of the same
type X , x ≠ y, and neither of them is special.

CLAIM 3.8. P ¼ ðU;≼ 0;MÞ is a symmetric poset.
Proof. The only nontrivial property to verify is transitivity: x ≼ 0 y and y ≼ 0 z imply

x ≼ 0 z. By x ≼ y and y ≼ z the transitivity of ≼ yields x ≼ z. Hence x ≼  0 z holds unless x
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and z are different one-way pairs of the same typeX , and neither of them is special. Thus
X is a large clump. Both x and z have the form uX

i ¼ ðXi; X
�
i Þ or vXi ¼ ðX�i ; XiÞ for some

i ≥ 2. x ≺ z implies that x is of the first and z is of the second form. By possibly changing
the indices, we may assume x ¼ uX

2 , z ¼ vX3 . Since x ≼ 0 y, y ≼ 0 z, and nonspecial one-way
pairs of the same type are incomparable, y could be of type X only if it were special.
y ¼ uX

1 is excluded by x ¼ uX
2 ⋠ uX

1 , and y ¼ vX1 is excluded by z ¼ vX3 ⋡ vX1 . Hence y is
of a different type Y .

Assume first y ¼ uY
i for some i. NowX2 ⊆ Yi ⊆ X�3, and thusNX ∩ Yi ¼ ∅, giving

Yi ⊆ Xj for some j ≠ 3 by Claim 2.4. Consequently, X2 ¼ Yi, a contradiction as it
would lead to X ¼ Y by Claim 2.1. Next, assume y ¼ vYi . X3 ⊆ Yi ⊆ X�2 gives a contra-
diction the same way. ▯

The following simple claim establishes the connection between dependency of
clumps and comparability in P.

CLAIM 3.9. In a cross-free system F , the clumps X ,Y ∈ F are dependent if and only
if for arbitrary i, j, uX

i is comparable with either uY
j or vYj . ▯

Proof. If uX
i is comparable with either uY

j or vYj , then X and Y are clearly depen-
dent. For the other direction, since F is cross-free, X and Y are nested if dependent. Let
Xa andYb be their dominant pieces. If i ¼ a and j ¼ b, then vYj ≺ uX

i ; if i ¼ a and j ≠ b,
then uY

j ≺ uX
i . In case of i ≠ a and j ¼ b we have uX

i ≺ uY
j , while if i ≠ a and j ≠ b, then

uX
i ≺ vYj . ▯

Take a symmetric chain cover S1; : : : ; St and a legal subpartition L ¼ fL1; : : : ; Llg
with valðLÞ ¼ t. Let us choose L so that l is maximal, and subject to this,

S
l
i¼1 Li con-

tains the maximum number of special matches. A symmetric chain Si naturally corre-
sponds to a chain of the clumps ðXj;X

�
jÞ for uX

j v
X
j ∈ Si. These can be covered by a single

edge; hence a symmetric chain cover corresponds to an edge set F of the same size. A
symmetric chain may contain both uX

j v
X
j and uX

j  0 v
X
j 0 for j ¼ ̸j 0 only if j ¼ 1 or j 0 ¼ 1.

Consequently, F is a pseudocover, as there are at least jX j− 1 different edges in F con-
necting X , and all ðXj;X

�
jÞ’s are connected.

It is left to show that L can be transformed to a grove Π with defðΠÞ ¼ valðLÞ. For a
clump X , let BðXÞ denote the set of indices j with uX

j v
X
j ∈

S
l
i¼1 Li.

CLAIM 3.10. For any clump X , the X-matches corresponding to BðXÞ are either all
contained in the same Li or are all singleton Li’s. 1 ∈ BðXÞ always gives the first
alternative.

Proof. There is nothing to prove for jX j ¼ 2, so let us assume jX j ≥ 3. As L is cho-
sen with l maximal, if uX

j v
X
j ∈ Li with jLij > 1, then there is an uY

h v
Y
h ∈ Li with uY

h

comparable with either uX
j or vXj . If Y ≠ X , then Claim 3.9 gives that uY

h is also com-
parable with uX

j 0 or v
X
j 0 for any j 0 ∈ BðXÞ. If Y ¼ X , then either j ¼ 1 or h ¼ 1 follows,

implying uj 0vj  0 ∈ Li for every j 0 ∈ BðXÞ. This argument also shows that 1 ∈ BðXÞ leads
to the first alternative. ▯

Let βðXÞ ¼ i in the first alternative if Li is not a singleton, and let βðXÞ ¼ 0 other-
wise. Let I denote the set of indices for which Li is a singleton. Let us construct the grove
Π as follows. For any X with βðXÞ ¼ 0, BðXÞ ≠ ∅, let ~X ∈ DðXÞ denote the clump
consisting of pieces Xi with i ∈ BðXÞ and the piece

S
j∈ ̸BðXÞXj. The latter set is none-

mpty since either 1 ∈= BðXÞ orBðXÞ ¼ f1g by Claim 3.10; thus j ~X j− 1 ¼ jBðXÞj. Define
B0 ¼ f ~X∶βðXÞ ¼ 0g. For i ∈= I , let Bi ¼ fðXj;X

�
jÞ∶uX

j v
X
j ∈ Lig. The next lemma com-

pletes the proof.
LEMMA 3.11. Π consists of B0 and the Bi’s for i ∈= I is a grove with defðΠÞ ¼

valðLÞ.
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Proof. Once proved that Π is a grove, defðΠÞ ¼ valðLÞ follows immediately:P
~X∈B0
ðj ~X j− 1Þ ¼P

X∶βðXÞ¼0jBðXÞj ¼ jI j, and if i ∈= I , then jBij ¼ jLij.
Let us verify that Π is a grove. Property (1) in Definition 1.2 holds since Bi for i ∈= I

contains only small clumps. Property (3) is implied by Claim 3.9 since the elements of
different Li’s are pairwise incomparable. However, verifying property (2) needs some
further technical efforts.

Consider a clump X with βðXÞ ¼ i > 0 (and thus i ∈= I). Let us say that a piece Xj

is a dominant piece ofX if, for someY ≠ X with βðY Þ ¼ i,Xj is the dominant piece ofX
w.r.t. Y . Let UðXÞ denote the set of the indices of the dominant pieces of X ; note that
the set UðXÞ− BðXÞ is possibly nonempty. We shall prove the following claim.

CLAIM 3.12. If βðXÞ > 0 and jBðXÞj ≥ 2, then BðXÞ ∩ UðXÞ ¼ ∅.
Before proving the claim, we show how property (2) follows. Assume for a contra-

diction that an edge xy ∈ ðV2 Þ covers three clumps in some Bi. Using Claim 3.6, these
three clumps form a chain for the partial order ≼. If these three clumps were derived from
three different basic clumps, then Li would contain a symmetric chain of length three,
since ≼ and ≼ 0 coincide for such clumps.

Thus we need to have two clumps derived from the same basic clump X : xy ∈ ðV2 Þ
connects ðXj;X

�
jÞ, ðXj 0 ; X

�
j  0 Þ, and ðYh;Y

�
hÞ for βðXÞ ¼ βðY Þ ¼ i. Note that jBðXÞj ≥ 2

holds. Hence one of x and y is in Xj and the other in Xj 0 ; this also yields X ≠ Y . Let Xa

be the dominant piece ofX w.r.t.Y . EitherYh ⊆ Xa orY �h ⊆ Xa. Consequently, x ∈ Xa

or y ∈ Xa, implying a ¼ j or a ¼ j 0. This contradicts Claim 3.12.
Proof of Claim 3.12. Assume, contrary to the claim, that BðXÞ ∩ UðXÞ ≠ ∅. We

first show that jUðXÞj ≥ 2 leads to a contradiction. Consider arbitrary j ∈ BðXÞ ∩
UðXÞ and j 0 ∈ UðXÞ− fjg, say, Xj is the dominant piece of X w.r.t. Y and Xj 0 the
one w.r.t. Z with βðY Þ ¼ βðZÞ ¼ i. Let a ∈ BðY Þ and b ∈ BðZÞ. Then Ya ⊆ Xj or
Y �a ⊆ Xj, and Xj ⊆ Zb or Xj ⊆ Z �b; hence Li contains a symmetric chain of length
three.

Hence jUðXÞj ¼ 1. Let UðXÞ ¼ fjg. We next show 1 ∈= BðXÞ. Assume again that
Xj is the dominant piece of X w.r.t. Y with βðY Þ ¼ i. If 1 ∈ BðXÞ and j ≠ 1, then a Y -
match, uX

j v
X
j and vX1 u

X
1 form a symmetric chain in Li. If j ¼ 1, then a Y -match, uX

1 v
X
1

and vXh u
X
h form a symmetric chain for arbitrary h ∈ BðXÞ− f1g.

Let us replace Li by L 0
i ¼ Li − fuX

j v
X
j g þ fuX

1 v
X
1 g. By Claim 3.9, any element of L 0

i is
incomparable to any element of Lh for h ≠ i. We shall prove that L 0

i does not contain any
symmetric chain of length three given that Li did not contain any. This gives a contra-
diction as L was chosen to contain the maximal possible number of special matches.
Indeed, assume there existed such a symmetric chain containing uX

1 v
X
1 . There is an edge

xy ∈ ðV2 Þwith x ∈ X1 connecting the small clumps corresponding to the three matches in
the chain. Since UðXÞ ¼ fjg, Xj is the dominant piece of X w.r.t. the other clumps
in the chain, which easily gives y ∈ Xj. Now xy connects ðXj;X

�
jÞ and the two clumps

in the original chain different from ðX1; X
�
1Þ, and thus Claim 3.6 yields a chain of length

three in Li. ▯ ▯

3.2. Proof of Lemma 3.3. First we need the following lemmas.
LEMMA 3.13. Assume that for three small clumps X ¼ ðX1; X2Þ, Y ¼ ðY 1; Y 2Þ,

Z ¼ ðZ1; Z 2Þ, all four sets X1 ∩ Y 1 ∩ Z1, X1 ∩ Y 2 ∩ Z 2, X2 ∩ Y 1 ∩ Z 2, X2 ∩ Y 2 ∩
Z1 are nonempty. Then all of X , Y , and Z are derived from the same basic clump
(and thus none of them is basic itself).

Proof. Let Xc ¼ NX , Yc ¼ NY , Zc ¼ NZ . By As for a sequence s of three literals
each 1,2 or c, we mean the intersection of the corresponding sets. For example,
A12c ¼ X1 ∩ Y 2 ∩ Zc.
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The conditions mean that the sets A111, A122, A212, A221 are nonempty. V −
ðA111 ∪ NðA111ÞÞ ≠ ∅, as there is no edge between A111 and X2; thus jNðA111Þj ≥ k−
1 as G is (k− 1)-connected. This implies

k− 1 ≤ jAc11 ∪ A1c1 ∪ A11c ∪ A1cc ∪ Ac1c ∪ Acc1 ∪ Acccj;

asNðA111Þ is a subset of the set on the right-hand side. Let us take the sum of these types
of inequalities for all A111, A122, A212, A221. This gives 4ðk− 1Þ ≤ S1 þ 2S2 þ 4jAcccj,
where S1 is the sum of the cardinalities of the sets having exactly one c in their indices,
while S2 is the same for two c’s.

On the other hand, jXcj ¼ jYcj ¼ jZcj ¼ k− 1. This gives 3ðk− 1Þ ¼ S1 þ 2S2 þ
3jAcccj. These together imply S1 ¼ S2 ¼ 0, jAcccj ¼ k− 1. We are done by Claim 2.1,
since NX ¼ NY ¼ NZ ¼ Accc. ▯

LEMMA 3.14. (see [11]) (i) Let L1, L2, L3 be one-way pairs with L1 and L2 dependent,
L1 ∧ L2 and L3 also dependent, but L2 and L3 independent. Then L−

1 − L−
2 ⊆ L−

3 . (ii) Let
L1, L2, L3 be one-way pairs with L1 and L2 dependent, L1 ∨ L2 and L3 also dependent, but
L2 and L3 independent. Then Lþ1 − Lþ2 ⊆ Lþ3 .

Proof. (i) The dependence of L1 ∧ L2 and L3 implies L−
2 ∩ L−

3 ≠ ∅, so L2 and L3 can
only be independent if Lþ2 ∩ Lþ3 ¼ ∅. Consider now the pair N ¼ ðL1 ∧ L2Þ ∨ L3.
Nþ ¼ ðLþ1 ∪ Lþ2 Þ ∩ Lþ3 ¼ Lþ1 ∩ Lþ3 ; hence Nþ ⊆ Lþ1 . Applying Claim 2.5 for the small
clumps L1 and N ̲, we get N− ⊇ L−

1 , implying the claim. (ii) follows from (i) by reverting
the orientations of all pairs. ▯

Proof of Lemma 3.3. Let F  0 ¼ F ÷ K . If K is large, then F  0 ¼ F by Lemma 2.3;
therefore K will be assumed to be small with an orientation LK .

If F covers F  0 but not F , then by Claim 2.2 there exists a small clump X ∈ D2ðFÞ−
D2ðF  0Þ not connected by F ; thus X and K are crossing. Choose X with the orientation
LX compatible with LK so that LX is minimal to these properties w.r.t. ≼ (that is, there
exists no other uncovered X  0 with orientation LX  0 compatible with LK so that
LX  0 ≺ LX). Choose Y not connected by F with LX ≼ LY and LY maximal in the ana-
logous sense (X ¼ Y is allowed).

LX ∧ LK and LY ∨ LK are nested with LK and thus connected by edges x1y1, x2y2 ∈
F with x1 ∈ L−

X ∩ L−
K , y2 ∈ LþY ∩ LþK . As X and Y are not connected, y1 ∈ LþK − LþX ,

x2 ∈ L−
K − L−

Y follows. Let F  0 ¼ F − fx1y1; x2y2g þ fx1y2; x2y1g denote the flipping
of x1y1 and x2y2. F  0 connects X and Y , and we shall prove that F  0 connects all small
clumps in D2ðF Þ connected by F . Hence after a finite number of such operations all
small clumps in D2ðFÞ will be connected, so by Claim 2.2, F will be covered.

For a contradiction, assume there is a small clump S connected by F but not by F  0.
No edge in F ∩ F  0 may connect S; hence either exactly one of x1y1 and x2y2 connects it,
or if both, then x1 and y2 are in the same piece, and y1 and x2 are in the other piece of S .
In this latter case, K and S are strongly dependent.

We claim that S is basic. Indeed, assume S is not basic but derived from the basic
clump S0. S0 and K are dependent since x1y1 or x2y2 connects both; hence Lemma 2.3
implies that S0 and K are nested. It it easy to see that in this case S and K are compar-
able, and consequently, F  0 also covers S .

(I) First, assume that x1y1 connects S, and choose the orientation LS with x1 ∈ L−
S ,

y1 ∈ LþS . We claim that LS and LY are also dependent. Indeed, if they are in-
dependent, then Lemma 3.14(i) is applicable for L1 ¼ LK , L2 ¼ LY , L3 ¼ LS ,
since LK ∧ LY and LS are dependent because x1y1 covers both. This gives
x2 ∈ L−

K − L−
Y ⊆ L−

S ; that is, x2y1 connects S , a contradiction.
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Hence we may consider the one-way pair LS ∨ LY . LS ∨ LY is strictly larger
than LY . Indeed, if LS ≼ LY held, then y2 ∈ LþY ⊆ LþS ; thus x1y2 would connect
S. By the maximal choice of LY , LS ∨ LY is connected by some edge f ∈ F . By
Claim 2.7, f also connects S orY . (It can be shown thatY is also basic the same
way as for S above.)
AsY was not connected by F , f must connect S . f ¼ x1y1 gives a contradiction,
as x1 ∈ L−

S ∪ L−
Y and y1 ∈= LþX implies y1 ∈= LþS ∩ LþY . Hence f ¼ x2y2, and since

F  0 does not connect S, we get x2 ∈ LþS , y2 ∈ L−
S . Also, since f connects LS ∨ LY ,

we have x2 ∈ LþS ∩ LþY , and hence by LþY ⊆ LþX it follows that x2 ∈ LþS ∩ LþX ∩
L−
K . Notice also y2 ∈ L−

S ∩ LþX ∩ LþK .
(II) Next, assume x2y2 connects S. (The above argument yields that this is indeed

always the case.) The same argument applies by exchanging ∨ and ∧, X and Y ,
“minimal” and “maximal” everywhere and applying Lemma 3.14(ii) instead
of (i).
Namely, choose an orientation HS of S with x2 ∈ H−

S , y2 ∈ HþS (it will turn out
that HS ¼ LS

 �
). The dependence of HS and LK may be proved via Lemma 3.14

(ii): in case they were independent, we could apply the lemma for L1 ¼ LK ,
L2 ¼ LX , L3 ¼ HS .
HS ∧ LX ≺ LX follows, as otherwise x1y2 would connect S . By the minimal
choice of LX , an edge f ∈ S connects HS ∧ LX and thus HS . f ¼ x2y2 is a con-
tradiction since x2 ∈= L−

X , implying f ¼ x1y1. Again we may conclude x1 ∈ HþS ,

y1 ∈ H−
S , which verifies HS ¼ LS

 �
. As above, it follows that x1 ∈ L−

S ∩ L−
X ∩ L−

K

and y1 ∈ LþS ∩ L−
X ∩ LþK .

In summary, it is always the case that both x1y1 and x2y2 cover S, and thus the
argument of both cases is applicable. Now x1, y2, y1, and x2 witness that the
clumps S, X , and K satisfy the condition in Lemma 3.13, contradicting the
assumption that K was a small clump. ▯

4. The algorithm. As outlined in the introduction, our algorithm is a simple itera-
tive application of a subroutine determining the dual optimum νðGÞ. Theorem 3.4 shows
that νðGÞ ¼ νðKÞ for an arbitrary skeleton K. Given a skeleton K, νðKÞ can be deter-
mined based on Fleiner’s theorem: [5] gives a proof of Theorem 3.5 based on a (linear
time) reduction to maximum matching in general graphs, as described in section 4.2.
Hence the only nontrivial question is how a skeleton can be found. A naive approach
is choosing clumps greedily so that they do not cross the previously selected ones. The
difficulty arises from the fact that the number of the clumps might be exponentially
large, forbidding us from checking all clumps one by one. In fact, it is not even clear
how to decide whether a given cross-free system is a skeleton. To overcome these diffi-
culties, we restrict ourselves to a special class of cross-free systems as described in the
next subsection.

4.1. Constructing a skeleton. The following property characterizes the special
cross-free systems we wish to use.

DEFINITION 4.1. A cross-free set H ⊆ C is stable if it fulfills the following condition.
For any U ∈ C − H , if C þ U is cross-free, then there exist no clumps K , K  0 ∈ H so that
K , U , K  0 form a chain.

Observe that K , U , K  0 form a chain if and only if K has a piece K 1, K  0 has a piece
K  0

1, and U has two different pieces U 1 and U 2 with K1 ⊆ U 1, K  0
1 ⊆ U 2.

Let us now introduce some new notation concerning pieces. If the set B ⊆ V is a
piece of the basic clump X , then let B♯ denote X . Let Q be the set of all (connected)
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pieces of all basic clumps, whereas Q1 is the set of all (not necessarily connected) pieces
of all clumps. For a subset A ⊆ Q, A♯ is the set of corresponding basic clumps (e.g.,
Q♯ ¼ C). For a set H ⊆ C, by

S
H we denote the set of all pieces of clumps in H.

The following simple claim will be used to handle chains of length three.
CLAIM 4.2. For pieces B1, B2, B3 ∈ Q1, if (i) B1 ⊆ B2 ⊆ B3 or (ii) B1 ⊆ B2 and

B3 ⊆ B�2, then the corresponding clumps B♯
1, B

♯
2, B

♯
3 form a chain.

Proof. Recall that an orientation of a possibly large clump X was defined as an
orientation of a small clump in D2ðXÞ, and a sequence of clumps form a chain if they
admit orientations forming a chain for the partial order ≼. In case (i), we have
ðB1; B

�
1Þ ≼ ðB2; B

�
2Þ ≼ ðB3; B3Þ�, whereas in case (ii) we have ðB1; B

�
1Þ ≼ ðB2; B

�
2Þ ≼

ðB�3; B3Þ. ▯
Clearly,H ¼ ∅ is stable, andevery skeleton is stableaswell.LetM ⊆ Qdenote the set

of all pieces minimal for inclusion. Based on the following claim, we will be able to deter-
mine whether a stable cross-free system is a skeleton. The subroutine for finding the ele-
ments ofMwill be given in the appendix among other technical details of the algorithm.

CLAIM 4.3. The stable cross-free system H ⊆ C is a skeleton if and only if M♯ ⊆ H.
Proof. On the one hand, every skeleton should contain M♯. Indeed, consider an

M ∈ M. M♯ cannot cross any X ∈ C, as ϒðX;M ♯Þ would contain a clump with a piece
being a proper subset of M .

On the other hand, assume H is not a skeleton even though M♯ ⊆ H. Hence there
exists a clump U ¼ ðU 1; : : : UtÞ ∈ C −H, not crossing any element ofH. Consider mini-
mal pieces M 1 ⊆ U 1, M 2 ⊆ U 2. Then M ♯

1, U , M ♯
2 form a chain by Claim 4.2(ii), contra-

dicting stability. ▯
AssumeH is a stable cross-free system, but not a skeleton. In the following, we show

how H can be extended to a stable cross-free system larger by one. By the above claim,
there is an M ∈ M with M ♯ ∈ C −H. Let

L1 ≔ fX ∈ H: X and M ♯ are nestedg;
L2 ≔ fX ∈ H: X and M ♯ are independentg:ð4:1Þ

CLAIM 4.4. If L1 ¼ ∅, then HþM ♯ is a stable cross-free system.
Proof. It is clear that H  0 ¼ HþM ♯ is cross-free. For a contradiction, assume that

for some U ∈ C −H  0 and K , K  0 ∈ H, H 0 þ U is cross-free, although K , U , K  0 form a
chain. H is stable, and hence M ♯ ∈ fK;K  0g; without loss of generality assume
M ♯ ¼ K  0. Now K and M are dependent and thus nested, a contradiction. ▯

In what follows we assume L1 ≠ ∅. The minimality of M implies that for any
X ∈ L1, the dominant piece ofM ♯ w.r.t. X is a connected component ofM �. The central
concept and key lemma of the algorithm are as follows.

DEFINITION 4.5. The piece C ∈ Q fits the pair ðH;M Þ if
(a) C ♯ ∈ C −H, C ⊆ M �.
(b) there exists a W ∈ H with a piece W 1 ⊆ C .
(c) one can take any clump X ∈ L1 with dominant piece Xa w.r.t. M ♯ and an arbi-

trary other piece Xi with i ≠ a. Then either Xi ⊈ C or Xi ∩ C ¼ ∅, and if
Xa ∩ C ≠ ∅, then Xi ∩ C � ¼ ∅.

(d) C ♯ is independent from every X ∈ L2.
LEMMA 4.6. Let C be an inclusionwise minimal member of Q−

S
H fitting ðH;M Þ.

Then Hþ C ♯ is a stable cross-free system.
There exists a C satisfying the conditions of this lemma, as according to the defini-

tion, the pieces of M ♯ different from M (that is, the connected components of M �) fit
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ðH;M Þ. A minimal C can be found using standard bipartite matching theory similarly
as in [11]; the technical details are postponed until the appendix. The proof of Lemma 4.6
is based on the following claim.

CLAIM 4.7. Let C ∈ Q−
S
H, C ⊆ M �. Assume there exists a W ∈ H with a piece

W 1 ⊆ C . The following two properties are equivalent: (i) C fits ðH;MÞ; (ii) Hþ C ♯ is
cross-free.

Proof. First we show that (i) implies (ii). C ♯ is independent from all pairs in L2.
Consider an X ∈ L1. C ♯ and X cannot cross by Lemma 2.3 whenever X or C ♯ is large.
Thus we may assume that both are small basic clumps, X ¼ ðX1; X2Þ with X2 being the
dominant piece of X w.r.t. M ♯. If X and C ♯ are dependent, then X1 ∩ C ≠ ∅ or
X2 ∩ C ≠ ∅. In the first case, (c) implies X1 ⊈ C , and hence nestedness follows by
Claim 2.5. So let us assume X1 ∩ C ¼ ∅. Hence X2 ∩ C ≠ ∅, and thus X1 ∩ C � ¼ ∅
by the second part of (c). NowX andC ♯ cannot be dependent sinceX1 does not intersect
any of C and C �, a contradiction.

Next we show that (ii) implies (i). (a) and (b) are included among the conditions.
For (c), consider anX ∈ L1 with dominant pieceXa w.r.t.M ♯ and another piece Xi with
i ≠ a. Notice that Xi ⊆ M �. If X and C ♯ are independent, then Xi ∩ C ¼ ∅, as other-
wise an edge between Xi ∩ C and M would connect both. If they are dependent so that
the dominant piece of X w.r.t. C ♯ is different from Xi, then Xi ⊈ C or Xi ∩ C ¼ ∅ fol-
lows. Next, assume that the dominant piece isXi w.r.t. C ♯. If C were the dominant piece
of C ♯ w.r.t. X , thenM ⊆ Xa ⊆ C would give a contradiction. Hence the dominant piece
of C ♯ is different from C , and thus C ⊆ Xi. NowW 1 ⊆ C ⊆ Xi; henceW , C ♯, X form a
chain by Claim 4.2(i), a contradiction to the stability of H.

Assume next Xa ∩ C ≠ ∅ and Xi ∩ C � ≠ ∅. X and C ♯ are dependent and thus
nested, and as above, the dominant piece of X cannot be Xi. C cannot be the dominant
piece of C ♯ as Xi ⊆ C would contradict Xi ∩ C � ≠ ∅. Hence C ⊆ X�i . We get a contra-
diction again because of the chain W , C ♯, X .

Finally, for (d) assume C ♯ and X ∈ L2 are dependent. C cannot be the dominant
piece of C ♯ w.r.t. X as it would yield X ∈ L1. Consequently, Xi ⊆ C� for a nondominant
piece Xi of X w.r.t. C ♯, and thus by Claim 4.2(ii), W , C ♯, X form a chain, a contra-
diction again to stability. ▯

Proof of Lemma 4.6. Using Claim 4.7, it is left to show that there exists no U ∈ C −
ðHþ C ♯Þ and K ∈ H so that Hþ C ♯ þ U is cross-free and C ♯, U , K form a chain. In-
deed, in such a situation C ♯ and K would be dependent and thus nested. Assume first
that the dominant piece of C ♯ w.r.t. K is different from C . Then for some piece K 1 of K ,
we have K1 ⊆ C �, and by Claim 4.2(ii),W , C ♯, K is a chain, contradicting the stability
of H.

If C is the dominant piece of C � w.r.t. K , then for some pieces U 1 of U and K 1 of K ,
K1 ⊈ U 1 ⊈ C . Now U 1 ∈ Q−

S
H, U 1 ⊆ M �, and K1 ⊆ U 1. By making use of

Claim 4.7, U 1 fits ðH;MÞ, a contradiction to the minimal choice of C . ▯

4.2. Description of the dual oracle. To determine the value νðGÞ, we first con-
struct a skeleton K as described above. For K, we apply the reduction to Theorem 3.5 as
in section 3.1. As already mentioned, a minimal chain decomposition along with max-
imal legal subpartition of a symmetric poset P ¼ ðU;≼;M Þ can be found via a reduction
to finding a maximummatching. For the sake of completeness and also because it will be
needed for the minimum node-induced cost version, we include this reduction. Define the
graph C ¼ ðU;HÞ with uv 0 ∈ H if and only if u ≺ v and vv 0 ∈ M for some v ∈ U .

It is easy to see that the set fm1;m2; : : : ;mlg ⊆ M is a symmetric chain if and only
if there exists edges e1; : : : ; el−1 ∈ H such that m1e1m2e2 : : :mk−1ek−1mk is a path,
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called an M -alternating path. The transitivity of ≼ ensures thatM ∪ H contains no M -
alternating cycles. Let N ⊆ H be a matching in C . Then the components of M ∪ N are
M -alternating paths, each containing exactly two nodes not covered by N . Hence find-
ing a maximummatching in H is equivalent to finding a minimum chain cover in P. The
running time of the most efficient maximummatching algorithm for a graph on n1 nodes
with m1 edges is Oð ffiffiffi

n
p

1m1Þ [20], Vol. I, p. 423].
Let us now give upper bounds on jKj and on jU j. Jordán [15], [16] showed that the

size of the optimal augmenting edge set is at most maxðbðGÞ− 1; dtðGÞ2 eÞ þ dk−2
2 e. Here

bðGÞ is the maximum size of a clump, while tðGÞ is the maximum number of pairwise
disjoint sets in Q. Since bðGÞ ≤ n− ðk− 1Þ, tðGÞ ≤ n, it follows that n is an upper
bound on the size of an augmenting edge set. In a skeletonK, the set of clumps connected
by an edge xy form a chain. Since the size of a chain can also be bounded by n, we may
conclude

P
X∈KðjX j− 1Þ ≤ n2 and thus jKj ≤ n2. Using the running time estimation in

the appendix, this gives a bound Oðkn5Þ on finding K.
In section 3.1 the minimum pseudocover of K is reduced to a minimum symmetric

chain cover of a poset P ¼ ðU;≼;M Þ with jU j ¼ Oðn2Þ, since there are 2jX j nodes in U
corresponding the clump jX j. Hence the running time of the matching algorithm can be
bounded by Oðn5Þ. As indicated in the introduction, at most (n2) calls of the dual oracle
enable us to compute an optimal augmentation. This gives a total running time Oðkn7Þ.

As in [11], another algorithm can be constructed which calls the dual oracle only
once. First, let us find a skeleton K ¼ fK1; : : : ; Klg with a cover F and a grove Π of K
with defðΠÞ ¼ jF j. Then we iteratively apply sequences of flipping operations as in Lem-
ma 3.3 for F i−1 ¼ C ÷ fK1; : : : ; Ki−1g and Ki for i ¼ l;l− 1; : : : ; 1, resulting finally in
a cover F  0 of C with jF j ¼ jF  0j. For each i it can be easily seen that after Oðn2Þ flippings
we get a cover of F i−1; thus Oðn4Þ improving flippings suffice. The realization of a flip-
ping step can be done using similar techniques as found in the appendix. We omit this
analysis as it is highly technical, and we could not get a better running time estimation
as for the previous algorithm.

4.3. Node-induced cost functions. The problem of finding a minimum-cost
edge set whose addition makes a (k− 1)-connected graph k-connected is NP-complete,
as already making the graph G ¼ ðV;∅Þ connected by adding a minimum-cost edge set
generalizes the Hamiltonian circuit problem, even for 0-1-valued cost functions.

However, for node-induced cost functions the other three basic problem—directed
node-connectivity and both directed and undirected edge-connectivity augmentation—
are solvable. We show that augmenting undirected node-connectivity by one is also
tractable.

A cost function c 0: E → R is node-induced if there exists a c: V → R so that
c 0ðuvÞ ¼ cðuÞ þ cðvÞ for every uv ∈ E. By the second part of Theorem 3.4, for a skeleton
K and a node-induced cost function c 0, the minimum c 0-cost of a cover of C is the same as
that of K. Hence it is enough to construct a subroutine for determining the minimum-
cost νc 0 ðKÞ of a cover of K. A minimum-cost augmenting edge set can be found by itera-
tively calling this dual oracle.

Furthermore, by Lemma 3.7, ν 0cðKÞ equals the minimum-cost of a pseudocover ofK.
Finding a minimum-cost pseudocover can be easily done based on the following
weighted version of Fleiner’s theorem, which reduces to maximum-cost matching in gen-
eral graphs.

Given a symmetric poset P ¼ ðU;≼;MÞ and a cost functionw: U → R, let us define
the cost of the symmetric chain S ¼ fu1v1; : : : ; ulvlg ⊆ M with u1 ≼ : : : ≼ ul,
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v1 ≽ : : : ≽ vl by wðSÞ ¼ wðulÞ þwðv1Þ. Our aim is to find a chain cover of minimum
total cost.

Consider the reduction to the matching problem in section 4.2. For a matching N ⊆
H of C , the components of M ∪ N are M -alternating paths each corresponding to a
symmetric chain. The alternating path corresponding to the chain S is v1u1v2u2 : : :
vlul; hence the cost of the two nodes not covered by N equals the cost of the chain.
Consequently, the cost of a symmetric chain cover equals the total cost of the nodes
not covered by N . Hence minimizing the cost of a symmetric chain cover is equivalent
to finding a maximum-cost matching. Note that here we need a maximum-cost matching
only for node-induced cost functions, although this problem is tractable for arbitrary
cost functions as well.

To find a minimum-cost pseudocover of K, we construct the symmetric poset P ¼
ðU;≼ 0;MÞ as in section 3.1. For a one-way pair u ¼ ðu−; uþÞ ∈ U , let wðuÞ ¼
minx∈uþcðxÞ. We claim that finding a minimum-cost symmetric chain cover for this
w is equivalent to finding a minimum-cost pseudocover of K.

Indeed, there is a one-to-one correspondence between chains consisting of clumps of
the form ðXi; X

�
i Þ and the symmetric chains of U (with the restriction that a chain may

not contain both ðXi; X
�
i Þ, ðXj;X

�
jÞ for i, j > 1). A chainK1; K2; : : : ; Kl of clumps with

orientations L1 ≼ L2 ≼ : : : ≼ Ll can be covered by any edge between L−
1 and Lþl ; thus

the minimum cost of an edge covering it is wðLlÞ þwð L1
 �Þ with w defined as above.

Hence the minimum c-cost of a pseudocover in K equals the minimum w-cost of a sym-
metric chain cover of P.

5. Further remarks.

5.1. Degree sequences. What can we say about the degree sequences of the aug-
menting edge sets? It is well known that, in a graphG with arbitrary cost function on the
edges, the sets of nodes covered by a minimum-cost matching form the bases of a ma-
troid. A natural generalization of matroid bases are base polytopes (see, e.g., [20], Vol. II,
p. 767]).

For undirected edge-connectivity augmentation, the degree sequences of the opti-
mal augmenting edge sets form a base polytope, and the same holds for the in- and out-
degree sequences for directed edge-connectivity augmentation (see, e.g., [6]). This is also
true in the case of directed node-connectivity augmentation [9]. Moreover, all these re-
sults can be generalized for node-induced cost functions: the degree (resp., in- and out-
degree) sequences of minimum-cost augmenting edge sets form a base polytope. Hence a
natural conjecture is as follows.

CONJUCTURE 5.1. Given a (k− 1)-connected graph G and a node-induced cost
function, the degree sequences of the minimum-cost augmenting edge sets form a base
polytope.

This was essentially proved by Szabó in his master’s thesis [21] for k ¼ n− 2. His
result holds even without the assumption that the graph is (k− 1)-connected, indicating
that the conjecture might hold for arbitrary graphs as well.

5.2. Abstract generalizations. In this section, we discuss possible generaliza-
tions and extension of our results. A natural question is whether it is possible to give
a generalization of Theorem 1.3 for abstract structures. For directed connectivity aug-
mentation, Theorem 1.4 is only a special case of covering crossing families of set pairs
[9], Theorem 2.5], which is still only a special case of the general theorem on covering
positively crossing bisupermodular functions [9], Theorem 2.3].
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It would be possible to formulate an abstract theorem for describing coverings of a
system C of “basic clumps,” where under basic clump we simply mean a subpartition of a
set satisfying certain properties. However, it is not easy to extract the abstract proper-
ties C needs to fulfill so that the argument can carry over. In particular, we need to
ensure Claim 2.1, Lemma 2.3, Claims 2.4 and 2.5, and Lemmas 3.13 and 3.14 (for
set pairs arising from orientations of clumps). It may be verified that whenever C satisfies
these, all other proofs carry over; for the algorithm we also need a good representation
of C.

Since the argument is already quite abstract and complicated, and we could not find
an elegant list of properties that ensure all these claims, we did not formulate such an
abstract theorem in order to avoid an additional level of complexity. Furthermore, we
believe that there should be a relatively simple abstract generalization of Theorem 1.3,
which does not rely on all claims listed above. For comparison, the argument given in
[11] for proving Theorem 1.4 strongly relies on properties of one-way pairs in a (k− 1)-
connected digraph. Nevertheless, these are not needed (and in fact, not necessarily true)
for the general theorem for crossing families, which admits a much simpler proof.

A natural application of such an abstract theorem would be rooted connectivity
augmentation. Given a graph or digraph with designated node r0 ∈ V , it is called rooted
k-connected if there are at least k internally disjoint (directed) paths between r0 and any
other node. Similarly, a digraph is rooted k-edge-connected with root r0 if there are at
most k− 1 edge-disjoint directed paths from r0 to any other node. One might ask the
augmentation questions for rooted connectivity as well. It turns out that for digraphs
the minimum-cost versions of rooted k-connectivity and rooted k-edge-connectivity aug-
mentation are both solvable in polynomial time (see Frank and Tardos [10] and Frank
[7]): both problems can be formulated via matroid intersection (although the reduction
of the node-connectivity version is far from trivial).

In contrast, for undirected graphs the minimum-cost version of rooted k-connectiv-
ity augmentation is NP-complete: Hamiltonian cycle reduces to it even for k ¼ 2 and 0-1
costs. The minimum cardinality version of augmenting rooted connectivity by one was
studied by Nutov [19], who gave an algorithm finding an augmenting edge set of size at
most optþminðopt; kÞ ∕ 2.

An important difference between minimum cardinality directed and undirected
rooted connectivity augmentation is that while in the directed case there is an optimal
augmenting edge set consisting only of edges outgoing from r0, in the undirected case
it may contain edges not incident to r0. An example is V ¼ fr0; x; y; ag, E ¼
fr0x; r0y; xa; yag (a rectangle). For k ¼ 3, F ¼ fxy; r0ag is an optimal augmenting
set, but there is no augmenting set of size 2 of edges incident to r0.

We believe that a min-max formula and a polynomial time algorithm for finding an
optimal solution could be given by extending the method of the paper. However, it is not
completely straightforward how clumps should be defined in this setting. At this point,
we leave this question open, since we believe that it will be an easy consequence of a later
general abstract theorem.

5.3. General connectivity augmentation. In what follows, we give an argu-
ment showing that there is no straigthforward way of generalizing Theorem 1.3 for
general connectivity augmentation. For this, let us study directed connectivity augmen-
tation first. In case of augmentation by one, Theorem 1.4 states that the minimum size
of an augmenting arc set equals the maximum number of pairwise independent one-way
pairs. The min-max formula is quite similar if (k− 1)-connectivity is not assumed. In
this case, we need to consider a broader class of one-way pairs: for a digraph D ¼ ðV;AÞ
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and nonempty disjointX−,Xþ ⊆ V ,X ¼ ðX−; XþÞ is a one-way pair if there is no arc in
A from X− to Xþ (notice that jV − ðX− ∪ XþÞj ¼ k− 1 is not assumed). Let us define
pðXÞ ¼ maxð0; k− jV − ðX− ∪ XþÞjÞ. Clearly, an augmenting arc set should contain at
least pðXÞ arcs covering X . Then the minimum size augmenting edge set equals the
maximum of

P
ipðXiÞ over pairwise independent one-way pairs Xi. Actually, this is still

only a special case of [9], Theorem 2.3] where minimum coverings of positively crossing
bisupermodular functions are considered.

Hence a possible approach for general undirected connectivity augmentation would
be the following. Let a clump be a subpartitionX ¼ ðX1; : : : ; XlÞ ofV with dðXi; XjÞ ¼
0 (we do not assume jNX j ¼ k− 1), and let pðXÞ be a lower bound on the number of
edges needed to cover X . There are multiple possible candidates for pðXÞ, and we do not
commit to any of them; we work only with the mild assumption that (⋆)
pðXÞ ¼ maxð0; k− jNX jÞ whenever jX j ¼ 2, and pðXÞ ¼ 0 whenever jNX j ≥ k. A nat-
ural conjecture would be the following: the minimum size of an augmenting edge set
equals the maximum deficiency of a grove. Let a grove now mean a subpartition Π ¼
fB1; : : : ;Blg of clumps so that each Bi is semi-independent, and clumps belonging to
different Bi’s are independent. The deficiency of this grove is defined as

defðΠÞ ¼
Xl
i¼1

�P
X∈Bi

pðXÞ
2

�
:

We show by an example that this conjecture fails even if (⋆) is the only assumption
on pðXÞ. Let G ¼ ðV;EÞ be the complement of the graph in Figure 5.1, and let k ¼ 9.
For a node z ∈ V , let Zz ¼ ðfzg; fzg�Þ. The only basic clumps inG with jNX j < 9 are Za,
Zb, Zu1

, Zu2
, Zv1 , Zv2 , ðfu1; u2g; fu3g; fu4gÞ, ðfv1; v2g; fv3g; fv4gÞ, and ðfa; cg; fb; dgÞ.

fu1u4; u2u3; v1v4; v2v3; ab; ad; bcg is an augmenting edge set of size 7, while a grove of
value 6 is fB1;B2g with B1 ¼ fZu1

; Zu2
; Zu3

; Zu4
; ðfag; fu1; u2; dgÞg and B2 ¼ fZv1 ; Zv2 ;

Zv3 ; Zv4 ; ðfbg; fv1; v2; cgÞg.
We show that neither an augmenting edge set of size 6, nor a grove of value 7 exists.

On the one hand, assume there were an augmenting edge set F with jF j ¼ 6. Then F

FIG. 5.1. Example concerning general connectivity augmentation.
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could be partitioned into F ¼ F1 ∪ F2 with jF1j ¼ jF2j ¼ 3, F1 covering B1 and F2 cov-
ering B2. However, we need at least two edges to cover Za and two to cover Zb, and these
can only be contained in F1 and F2, respectively. If ad ∈ F1, then F1 cannot contain any
of au1 and au2, as otherwise at least one of Zu3

and Zu4
would remain uncovered. Hence

ad ∈= F1, and similarly bc ∈= F2. ab, cd ∈= F , as they do not cover any clump in B1 or B2;
thus ðfa; cg; fb; dgÞ remains uncovered.

On the other hand, assume a grove of value 7 exists. We claim that it should contain
ðfa; cg; fb; dgÞ, and two clumps of the form ðfag; AÞ and ðfbg; BÞ with b ∈ A and a ∈ B.
This is clearly a contradiction as they cannot be simultaneously contained in a grove,
since the edge ab connects all three of them. It can easily be checked that if we do not
require ðfa; cg; fb; dgÞ to be covered, then the remaining clumps may all be covered by
six edges. The same holds unless we require all clumps of the form ðfag; AÞ with b ∈ A,
jAj ≥ 3 and all clumps of ðfbg; BÞ with a ∈ B, jBj ≥ 3 to be covered. Consequently,
every grove of value 7 should contain such clumps.

Appendix. In this appendix we present how the subroutine for constructing a ske-
leton may be implemented using bipartite matching theory. The argument follows the
same lines as the one in the appendix of [11]. Let us start with a simple claim concerning
pieces.

CLAIM A.1. For a piece Y ∈ Q1 and an arbitrary set X ⊆ V , if X� ⊇ Y �, then
X ⊆ Y .

Proof. Indeed, assume X is not a subset of Y ; thus jX ∪ Y j > jY j. The condition
gives ðX ∪ Y Þ� ¼ Y �, and hence jNðX ∪ Y Þj < jNðY Þj ¼ k− 1, contradicting thatG is
(k− 1)-connected. ▯

Given the (k− 1)-connected graph G ¼ ðV;EÞ, let us construct the bipartite graph
B ¼ ðV  0; V  0 0;HÞ as follows. With each node v ∈ V associate nodes v 0 ∈ V  0 and v 0 0 ∈ V  0 0

and an edge v 0v 0  0 ∈ H . With each edge uv ∈ E associate two edges v 0u 0  0, u 0v 0 0 ∈ H . For a
set X ⊆ V , we denote by X  0 and X  0  0 its images in V  0 and V  0 0, respectively. The (k− 1)-
connectivity of G implies that B is (k− 1)-elementary bipartite; that is, for each
∅ ≠ X  0 ⊆ V  0, either NðX  0Þ ¼ V  0 0 or jN ðX  0Þj ≥ jX  0j þ k− 1. We say that X  0 ⊆ V  0 is
tight if jN ðX  0Þj ¼ jX  0j þ k− 1 and NðX  0Þ ≠ V  0 0. Observe that X  0 is tight if and only
if X ∈ Q1.

Given a function f : V  0 ∪ V  0  0 → N we call the set F ⊆ H an f -factor if dFðxÞ ¼ f ðxÞ
for every x ∈ V  0 ∪ V  0  0. Let f ðZÞ ¼P

x∈Z fðxÞ for Z ⊆ V  0 ∪ V  0 0.
CLAIM A.2. Consider a bipartite graph G ¼ ðV  0; V  0 0;HÞ and a function

f : V  0 ∪ V  0 0 → N so that f ðV  0Þ ¼ f ðV  0 0Þ and f ðxÞ ¼ 1 or f ðyÞ ¼ 1 for every xy ∈ H .
An f -factor exists if and only if f ðXÞ ≤ fðNðXÞÞ for every X ⊆ V  0.

Proof. An easy consequence of Hall’s theorem involves replacing each x ∈ V  0 ∪ V  0  0

by f ðxÞ copies. Note that by the condition fðxÞ ¼ 1 or f ðyÞ ¼ 1 for every xy ∈ H , at most
one copy of the same edge may be used. ▯

First we need to find the set M of minimal pieces. Let us consider nodes u, v ∈ V
with uv ∈= E. A piece X ∈ Q1 is called a uv-piece if u ∈ X and v ∈ X�. For a uv ∈= E,
consider the following f . Let f ðu 0Þ ¼ f ðv 0  0Þ ¼ kþ 1 and for z ∈ ðV  0 − u 0Þ ∪ ðV  0  0 − v 0 0Þ,
let f ðzÞ ¼ 1. An f -factor for this f is called a k-uv-factor. If G is (k− 1)-connected and
thus B a (k− 1)-elementary bipartite graph, then Claim A.2 implies the existence of a
(k− 1)-uv-factor. Let Fuv denote one of them.

CLAIM A.3. If there is a k-uv-factor, then there exists no uv-piece.
Proof. Assume X is a uv-piece. As X ∈ Q1, jNðX  0Þj ¼ jX  0j þ k− 1. Since u 0 ∈ X  0,

v 0 0 ∈= NðX  0Þ, we have f ðX  0Þ ¼ jX  0j þ k, f ðNðX  0ÞÞ ¼ jX  0j þ k− 1; thus by Claim A.2, no
k-uv-factor exists. ▯
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It is easy to see that any two uv-pieces are dependent and the union and intersection
of two uv-pieces are uv-pieces as well. Thus if the set of uv-pieces is nonempty, then it
contains a unique minimal element. In what follows we show how this can be found
algorithmically. For an edge set F ⊆ H , we say that the path U ¼ x0y0x1y1 : : : xtyt
is an alternating path for F from x0 to yt if xi ∈ V  0, yi ∈ V  0 0, xiyi ∈ H − F for
i ¼ 0; : : : ; t, and yixiþ1 ∈ F for i ¼ 0; : : : ; t− 1. Under the same conditions we also
say that x0y0x1y1 : : : xt is an alternating path for F from x0 to xt.

CLAIM A.4. (a) If there exists an alternating path for Fuv between u 0 and v 0 0, then
there exists no uv-piece. (b) Assume there is no alternating path for Fuv from u 0 to v 0 0; let
S denote the set of nodes z ∈ V having an alternating path for Fuv from u 0 to z  0. Then S is
the unique minimal uv-piece, and S is connected.

Proof. (a) Let U be an alternating path for Fuv from u 0 to v 0 0. Then FuvΔU , the
symmetric difference of the edge sets Fuv andU , is a k-uv-factor so, by Claim A.3, no uv-
piece exists. (b) Let Z be an arbitrary uv-piece. For every x ∈ Z − u, N ðZ  0Þ contains a
unique y 0 0 with x 0y 0 0 ∈ Fuv. The number of y ∈ V with u 0y 0 0 ∈ Fuv is exactly k, and all of
them are contained in NðZ  0Þ. These are jZ  0j þ k− 1 different elements of NðZ  0Þ, and
since Z ∈ Q1, NðZ  0Þ has no elements other than these. This easily implies that Z  0 con-
tains every x 0 ∈ V for which there is an alternating path for Fuv from u 0 to x 0, showing
S ⊆ Z . It is left to prove that S ∈ Q1. From the definition of S, it follows that for every
y 0 0 ∈ NðS  0Þ, there exists an x ∈ S with x 0y 0  0 ∈ Fuv, proving jNðS  0Þj ¼ jS  0j þ k− 1. The
connectivity of S follows since otherwise the connected component containing u would
be a smaller uv-piece. ▯

For the initialization of the algorithm, we determine the edge sets Fuv by a single
max-flow computation for every u, v ∈ V , uv ∈= E. By Claim A.4 the minimal uv-pieces
can be found by a breadth-first search. The minimal ones among these will give the
elements of M (note that the minimal uivi-set might be contained in some other
ujvj-set). We will use the sets Fuv also in the later steps of the algorithm.

Consider now a stable cross-free H which is not a skeleton, a minimal element
M ∈ M−

S
H, andL1,L2 as defined by (4.1). IfL1 ¼ ∅, then we are done by Claim 4.4;

hence in what follows we assume L1 ≠ ∅.
By Lemma 4.6, our task is to find a minimal C fitting ðH;MÞ. Let T be the set

of the maximal ones among those pieces of the clumps in L1 which are subsets
of M �.

CLAIM A.5. T consists of pairwise disjoint sets, and all of them are subsets of the
same piece M̂ ≠ M of M ♯.

Proof. Consider clumps X , Y ∈ L1 with pieces X1, Y 1 ∈ T . If X and Y are inde-
pendent, then X1 ∩ Y 1 ¼ ∅, as otherwise an edge between X1 ∩ Y 1 and M would con-
nect both. If they are dependent, then we show that the dominant piece Xa ofX w.r.t.Y
is different fromX1. Indeed, ifXa ¼ X1, then the dominant piece ofY w.r.t.X should be
Yb ≠ Y 1 as otherwise M ⊆ Y 1 would follow. Hence Y 1 ⊈ X1, a contradiction to the
maximality of Y 1. Similarly, the dominant piece of Y w.r.t. X may not be Y 1. Hence
Y 1 ⊆ X�; thus X1 ∩ Y 1 ¼ ∅.

Finally, assume that X1 ⊆ M̂ and Y 1 ⊆ ~M for pieces M̂ , ~M of M ♯. Then X , M ♯, Y
form a chain by Claim 4.2(ii), a contradiction to stability. ▯

Let us construct the bipartite graph B1 ¼ ðV  0; V  0 0;H 1Þ from B by adding some new
edges as follows.

(1) For each X ∈ L2, let x 0y 0  0, y 0x 0  0 ∈ H 1 for every xy connecting X .
(2) Let x 0y 0 0 ∈ H 1 whenever T ∈ T , x ∈ T and y ∈ T ∪ NðTÞ.
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(3) For each X ∈ L1 with dominant piece Xa w.r.t. M ♯, let x 0y 0 0 ∈ H 1 for every
x ∈ Xa, y ∈ X�a.

CLAIM A.6. Let C ∈ Q−
S
H, C ⊆ M̂ , supported by some W ∈ H. C fits ðH;MÞ if

and only if C  0 is tight in B1.
Proof. C  0 ⊆ V  0 is tight in B1 if and only if it is tight in B and there is no edge in

x 0y 0 0 ∈ H 1 − H with x 0 ∈ C  0, y 0 ∈ V  0 0 − NðC  0Þ. In such a configuration, we say that the
edge x 0y 0  0 blocks the set C  0. (This is equivalent to that xy connects the clump ðC;C �Þ.)

Assume C fits ðH;MÞ. Property (d) forbids any x 0y 0  0 ∈ H 1 − H of the first type
block C  0, while property (c) forbids any x 0y 0 0 of the second or third type to block
C  0. For the other direction, properties (a) and (b) follow by the conditions. For (d),
if C were dependent with some X ∈ L2, then a new edge of the first type would block
C  0. For (c), if C ∩ Xi ≠ ∅, Xi − C ≠ ∅ for some X ∈ L1 with a piece Xi ⊈ M �, then
consider a T ∈ T with Xi ⊆ T . C − T ≠ ∅, as otherwise W , C ♯, T ♯ would contradict
stability. By Claim A.1, C� ∩ ðT ∪ NðTÞÞ ≠ ∅; hence a new edge of the second type
blocks C  0. Finally, if Xa is the dominant piece of X w.r.t. M ♯, Xa ∩ C ≠ ∅, and
Xi ∩ C � ≠ ∅, then there is a new edge of the third type blocking C  0. ▯

To find a C as in Lemma 4.6, we need to add some further edges to B1. Indeed, we
need to ensure that C ∈ Q−

S
H and furthermore that C is supported by some

W ∈ L1. Consider now a W ∈ L1 with a piece W 1 ∈ T and a connected set Q with
W 1 ⊈ Q ⊆ M̂ . Let ZðQÞ denote the unique minimal X satisfying the following
property:

X ∈ Q; Q ⊆ X; and X fits ðH;MÞ:ðA:1Þ

We will determine ZðQÞ for different sets Q in order to find C . ZðQÞ is well defined since
it is easy to see the following: (i) M̂ satisfies (A.1); (ii) if X and X  0 satisfy (A.1), then X
and X  0 are dependent and X ∩ X  0 also satisfies (A.1); (iii) ZðQÞ is connected. The next
claim gives a simple algorithm for finding ZðQÞ for a given Q.

CLAIM A.7. Fix some u ∈ Q, v ∈ M . Let B2 denote the graph obtained from B1 by
adding all edges u 0y 0  0 with y ∈ Q ∪ NðQÞ. Let S denote the set of nodes z for which there
exists an alternating path for Fuv from u 0 to z  0. Then ZðQÞ ¼ S.

Proof. As M � is a uv-set in B2, applying Claim A.4(a) for B2 instead of B, we get
that B2 contains no alternating path for Fuv between u 0 and v″. By Claim A.4(b), S is
the unique minimal uv-piece in B2. NðS  0 ∪ Q  0Þ ¼ NðS  0Þ, and thus Q ∪ NðQÞ ⊆
S ∪ NðSÞ because of the new edges in B2; hence by Claim A.1, Q ⊆ S . By making
use of Claim A.6, S is the unique minimal set satisfying (A.1); thus ZðQÞ ¼ S . ▯

Consider now a clump W ¼ ðW 1;W 2; : : : ;WhÞ ∈ L1 with W 1 ∈ T . We want to
find a CW fitting ðH;MÞ supported by W 1. For each q ∈ NW ∩ M̂ , let us compute
ZðQÞ for Q ¼W þ q. Let CW denote a minimal set among these. A ZðQÞ can be found
by a single breadth-first search; thus we need at most k− 1 breadth-first searches. We
can compute such a CW for all possible choices ofW , and a minimal among these gives a
minimal C fitting ðH;M Þ. Therefore, the running time may be bounded by ðk− 1Þn
breadth-first searches, since by Claim A.5, jT j ≤ n.

Complexity. To find a skeleton system first we need n2 max-flow computations to
determine the minimal pieces and the auxiliary graphs. The running time for extending
the stable cross-free system by one member is dominated by ðk− 1Þn breadth-first
searches. Thus if s is an upper bound on the size of a skeleton, then we can determine
one in Oðn5 þ skn3Þ running time by using an Oðn3Þ maximum-flow algorithm and an
Oðn2Þ breadth-first search algorithm.
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