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We consider a nonlinear extension of the generalized network flow model, with the flow leaving an arc being an increasing
concave function of the flow entering it, as proposed by Truemper [Truemper K (1978) Optimal flows in nonlinear gain
networks. Networks 8(1):17-36] and by Shigeno [Shigeno M (2006) Maximum network flows with concave gains. Math.
Programming 107(3):439-459]. We give a polynomial time combinatorial algorithm for solving corresponding flow maxi-
mization problems, finding an g-approximate solution in O(m(mo +logn)log(MUm/¢)) arithmetic operations, where M and
U are upper bounds on simple parameters, and o is the complexity of a value oracle query for the gain functions. This also
gives a new algorithm for linear generalized flows, an efficient, purely scaling variant of the Fat-Path algorithm by Goldberg
et al. [Goldberg AV, Plotkin SA, Tardos E (1991) Combinatorial algorithms for the generalized circulation problem. Math.
Oper. Res. 16(2):351-381], not using any cycle cancellations.

We show that this general convex programming model serves as a common framework for several market equilibrium
problems, including the linear Fisher market model and its various extensions. Our result immediately provides combinatorial
algorithms for various extensions of these market models. This includes nonsymmetric Arrow-Debreu Nash bargaining,
settling an open question by Vazirani [Vazirani VV (2012) The notion of a rational convex program, and an algorithm for the
Arrow-Debreu Nash bargaining game. J. ACM 59(2), Article 7].
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1. Introduction. A classical extension of network flows is the generalized network flow model, with a gain
factor y, > 0 associated with each arc e so that if o units of flow enter arc e, then y,« units leave it. Since
first studied by Kantorovich [23], Dantzig [5], and Jewell [21], the problem has found many applications in
management science, including financial analysis and transportation; see Ahuja et al. [2, Chapter 15].

In this paper, we consider a nonlinear extension, concave generalized flows, studied by Truemper [40] in
1978, and by Shigeno [36] in 2006. For each arc e we are given a concave, monotone increasing function T,
such that if « units enter e then I',(«) units leave it. We give a combinatorial algorithm for corresponding flow
maximization problems, with running time polynomial in the network data and some simple parameters. We
also exhibit new applications, showing that it is a general framework containing multiple convex programs for
market equilibrium settings, for which combinatorial algorithms have been developed over the last decade. As an
application, we also get a combinatorial algorithm for nonsymmetric Arrow-Debreu Nash bargaining (ADNB),
resolving an open question by Vazirani [42]. We can also extend existing results to more general settings.

Generalized flows are linear programs and thus can be solved efficiently by general linear programming tech-
niques, the currently most efficient such algorithm being the interior-point method by Kapoor and Vaidya [24].
Combinatorial approaches have been used since the 1960s (e.g., Jewell [21], Onaga [28], Truemper [39]), yet the
first polynomial-time combinatorial algorithms were given only in 1991 by Goldberg et al. [14]. This inspired a
line of research to develop further polynomial-time combinatorial algorithms, e.g., Cohen and Megiddo [4], Gold-
farb and Jin [15], Goldfarb et al. [18], Tardos and Wayne [38], Fleischer and Wayne [10], Goldfarb et al. [17],
Goldfarb and Lin [16], Wayne [44], Radzik [33], and Restrepo and Williamson [34]; for a survey on combinato-
rial generalized flow algorithms, see Shigeno [35]. Despite the vast literature, no strongly polynomial algorithm
is known so far. Our algorithm for this special case derives from the Fat-Path algorithm in Goldberg et al. [14],
with the remarkable difference that no cycle cancellations are needed.

Nonlinear extensions of generalized flows have also been studied, e.g., in Ahlfeld et al. [1] and Bertsekas
et al. [3], minimizing a separable convex cost function for generalized flows. However, these frameworks do not
contain our problem, which involves nonlinear convex constraints.

Concave generalized flows being nonlinear convex programs, can also be solved by the ellipsoid method, yet
no practically efficient methods are known for this problem. Hence finding a combinatorial algorithm is also a
matter of running time efficiency. Shigeno [36] gave the first combinatorial algorithm that runs in polynomial
time for some restricted classes of functions I’,, including piecewise linear. It is also an extension of the Fat-Path
algorithm in Goldberg et al. [14]. In spite of this development, it has remained an open problem to find a
combinatorial polynomial-time algorithm for arbitrary concave increasing gain functions.
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Our result settles this question by allowing arbitrary increasing concave gain functions provided via value
oracle access. The running time bounds for this general problem are reasonably close to the most efficient linear
generalized flow algorithms. Concave gain functions extend the applicability range of the classical generalized
flow model, as they can describe, e.g., diminishing marginal utilities. From the application point of view,
another contribution of the paper is extending generalized flow techniques to the domain of market equilibrium
computations, where this model turns out to be a concise unifying framework.

The concave optimization problem might have irrational optimal solutions: in general, we give a fully
polynomial-time approximation scheme, with running time dependent on log(1/¢) for finding an g-approximate
solution. In the market equilibrium applications we have rational convex programs (as in Vazirani [42]): the
existence of a rational optimal solution is guaranteed. We show a general technique to transform a sufficiently
good approximation delivered by our algorithm to an exact optimal solution under certain circumstances. We
demonstrate how this technique can be applied on the example of nonsymmetric Arrow-Debreu Nash bargaining,
where the existence of a combinatorial algorithm was open (Vazirani [42]).

In §2, we give the precise definition of the problems considered. Thereby we introduce a new, equivalent vari-
ant of the problem, called the symmetric formulation, providing a more flexible algorithmic framework. Section 3
shows the applications for market equilibrium problems. Section 4 explores the background of minimum-cost
circulation and generalized flow algorithms and exhibits the main algorithmic ideas. We first present our sym-
metric generalized flow algorithm in §5 for the special case of linear gains. Based on this, §6 gives the algorithm
for arbitrary concave gain functions. Section 7 adapts these algorithms for the more standard sink formulation
of the problems. Section 8 considers the case when the existence of a rational optimal solution is guaranteed,
and shows how the approximate solution provided by our algorithm can be turned to an optimal solution. The
final §9 discusses possible further directions.

2. Problem definitions. We define two closely related variants of the linear and the concave generalized
flow problems. Let G = (V, E) be a directed graph. Let n=|V|, m = |E|, and for each node i € V, let d; be the
total number of incoming and outgoing arcs incident to i. We do not allow parallel arcs and hence we may use ij
to denote the arc from i to j. We also forbid oppositely directed pairs of arcs in the input. These restrictions are
only for notational convenience and all results straightforwardly extend to a setting with parallel and oppositely
directed arcs. We will use V — ¢ to denote the set V\{}.

In the linear setting, we are given lower and upper arc capacities /, u: E — R and gain factors y: E — R* on
the arcs, and node demands b: V — R. By a pseudoflow we mean a function f: E — R with [ < f < u. Given

the pseudoflow f, let
ei= Y Vifi— 2 fij—bs (1)
jijieE jiijeE

In the first variant of the problem, called the sink formulation, there is a distinguished sink node r € V. The
objective is to maximize e, for pseudoflows satisfying ¢; >0 for all ie V — 1.

This differs from the way the problem is usually defined in the literature with the more restrictive e¢; = 0
for i € V —t, and assuming / =0, b = 0. However, this problem can easily be reduced to solving the sink
formulation; see e.g., Shigeno [35].

The convex extension has been proposed by Truemper [40] and Shigeno [36]. On each arc ij € E, we are
given lower and upper arc capacities /, u: E — R and a monotone increasing continuous concave function
L;: [, u;;] — RU{—oc}; we are also given node demands b: V — R. As for generalized flows, a pseudoflow

ij
is a function f: E — R with [ < f <u. For a pseudoflow f, let

€ = Z Fji(fji) - Z fij —b;.
jiji€E jiijeE
In the concave sink formulation, we say that the pseudoflow f is feasible, if e; > 0 for alli € V —¢ and e, > —o0.
The objective is to maximize e, for feasible pseudoflows.

Shigeno [36] defines this problem with e, =0 if i € V — ¢, and b = 0 and without explicit capacity constraints.
She also discusses the version with e¢; > 0 and gives a reduction from the original version to this one. Whereas
capacity constraints can be simulated by the functions I’;;, we impose them explicitly as they will be included
in the running time bounds. The formulation with e; > 0 seems more natural as it gives a convex optimization
problem, which is not the case for ¢; = 0. Observe that we allow I;(f;;) = —oo; the reason is that we use the
gain function I};(@) = ¢;;loga on certain arcs in the market equilibrium applications. Having I;(f;;) = —o0
on any arc implies ¢; = —oo and thus contradicts feasibility; therefore we must enforce higher f;; values on
such arcs.
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In the sink formulation, the node ¢ plays a distinguished role. It turns out to be more convenient to handle
all nodes equally. For this reason, we introduce another, seemingly more general version, called the symmetric
Sformulation of both problems. Ideally, we would like to find a pseudoflow satisfying e; > 0 for every i € V. The
formulation will be a relaxation of this feasibility problem, allowing violation of the constraints, penalized by
possibly different rates at different nodes.

For each node i € V we are given a penalty factor M; > 0 and an auxiliary variable k; > 0. The objective is
to minimize k, =}, y M;k; for a pseudoflow f subject to ¢; +«; >0 for each i € V.

The objective k, is called the excess discrepancy. k, =0 means e; > 0 for each i € V. These conditions might
be violated, but we have to pay penalty M, per unit violation at i.

The sink version fits into this framework with M, = oo for i # ¢, M, =1 and b, = co. As shown in §7, we
can set finite, polynomially bounded M, and b, values, such that the symmetric version returns an optimal
(or sufficiently close approximate) solution to the sink version, both for linear and for concave gain functions.
Besides the sink version, another natural setting is when M, =1 for all i € V, that is, maintaining e; > 0 has the
same importance for all nodes.

Although the symmetric formulation could seem more general than the sink version, it can indeed be reduced
to it. For an instance of the symmetric version with graph G = (V, E), let us add a new sink node ¢ with an arc
from ¢ to every node i € V with gain factor 1/M,. Solving the sink version for this extended instance gives an
optimal solution to the original problem. The reason for introducing the symmetric formulation is its pertinence
to our algorithmic purposes.

2.1. Complexity model. The complexity setting will be different for generalized flows and for concave
generalized flows. For generalized flows, we aim to find an optimal solution, and in the concave case, only
an approximate one. For generalized flows, the gain functions are given explicitly as linear functions, and in
the concave case, the description of the functions might be infinite. To handle this difficulty, following the
approach of Hochbaum and Shanthikumar [19], we assume oracle access to the I';’s: our running time estimation
will give a bound on the number of necessary oracle calls. Two kinds of oracles are needed: (i) value oracle,
returning I, () for any @ € [1;;, u;;]; and (ii) inverse value oracle, returning a value 8 with a =I7;(B) for any
a € [L;(1;), T (uy)].

We assume that both oracles return the exact (possibly irrational) solution, and any oracle query is done
in time o. Also, we assume any basic arithmetic operation is performed in O(1) time, regardless to size and
representation of the possibly irrational numbers. We expect that our results naturally extend to the setting
with only approximate oracles and computational capacities in a straightforward manner. Notice that in an
approximate sense, an inverse value oracle can be simulated by a value oracle.

By an g-approximate solution to the symmetric concave generalized flow problem we mean a feasible solution
with the excess discrepancy larger than the optimum by at most €. An g-approximate solution to the sink version
means a pseudoflow with the objective value e, at most € less than the optimum, and the total violation of the
inequalities ¢; > 0 for i € V — ¢ is also at most . (Note that an e-approximate solution is thus not necessarily
feasible.)

In the symmetric formulation of both the linear and concave generalized flow problems, we assume that all
M, values are positive integers, and let M denote their maximum.

For generalized flows, we assume all /, u, and b values are given as integers and the 7y values as rational
numbers; let B be the largest integer used in their descriptions. The running time bound will be O(m?(mlog B+
log M) log n) for the symmetric formulation and O(m?(m + nlogn)log B) for the sink formulation. This is the
same as the complexity bound of the highest gain augmenting path algorithm by Goldfarb et al. [18]. The best
current running time bounds are O(m!'°n*log B) using an interior point approach by Kapoor and Vaidya [24]
and O(m?nlog B)' by Radzik [33], that is an enhanced version of Goldfarb et al. [18].

For the concave setting, we allow irrational capacities as well; in the complexity estimation, we will have U
as an upper bound on the absolute values on the b,’s, the capacities /;;, u;, and the T;(l;;), I};;(u;;) values. For
each arc ij, let us define r; = |I[;({;;)| whenever I;(l;;) > —oo and r;; = 0 otherwise. Let

ij>

U = max{max{|b,|: i € V}, max{|l;], |u;|, [;(u;)|, r;: ij € E}}.

For the sink version, we need to introduce one further complexity parameter U* because of difficulties arising
if I';;(1;;) = —oo for certain arcs. Let U* satisfy U < U*, and e, < U* for any pseudoflow (it is easy to see that

"'The O() notation hides a polylogarithmic factor.
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U* =d,U always satisfies this property). We also require that whenever there exists a feasible solution to the
problem (that is, e; > 0 for each i € V —t and e, > —o0), there exists one with e, > —U*. If T';(/;,) > —oo for
each arc jr € E, then U* =d,U also satisfies this property. For the case when —oo values are allowed, a bound
on U* can be given as in §8.

The main result is as follows:

THEOREM 1. For the symmetric formulation of the concave generalized flow problem, there exists a com-
binatorial algorithm that finds an e-approximate solution in running time O(m(mao + nlogn)log(MUm/¢)).
For the sink formulation, there exists a combinatorial algorithm that finds an e-approximate solution in
O(m(m+ nlogn)log(U*m/¢g)) time. In both cases, the running time bound is on the number of arithmetic
operations and oracle queries.

The starting point of our investigation is the Fat-Path algorithm in Goldberg et al. [14]. The first important
idea is using the symmetric formulation. This is a more flexible framework, and thus we will be able to entirely
avoid cycle cancellation and use excess transportation phases only. Our (linear) generalized flow algorithm is
the first generalized flow algorithm that uses a pure scaling technique, without any cycle cancellation. The key
new idea here is the way “A-positive” and “A-negative” nodes are defined, maintaining a “security reserve” in
each node that compensates for adjustments when moving from the A-scaling phase to the A/2-phase.

We extend the linear algorithm to the concave setting using a local linear approximation of the gain functions,
following Shigeno [36]. This approximation is motivated by the technique of Minoux [26] and Hochbaum and
Shanthikumar [19] for minimum cost flows with separable convex objectives.

3. Applications to market equilibrium and Nash bargaining problems. Intensive research has been pur-
sued over the last decade to develop polynomial-time combinatorial algorithms for certain market equilibrium
problems. The starting point is the algorithm by Devanur et al. [7] for computing market clearing prices in
Fisher’s model with linear utilities, followed by a study of several variants and extensions of this model. For a
survey, see Nisan et al. [27, Chapter 5] or Vazirani [42].

In the linear Fisher market model, we are given a set B of buyers and a set G of goods. Buyer i has a budget
m;, and there is one divisible unit of each good to be sold. For each buyer i € B and good j € G, if i buys x;;
units of good j, then she accrues Uj;x;; utility for some U;; > 0. Let n = |B| + |G| and m be the number of pairs
ij with U; > 0. We assume there is such an edge incident to every buyer and to every good. An equilibrium
solution consist of prices p; on the goods and an allocation x;;, so that (i) all goods are sold, (ii) all money of
the buyers is spent, and (iii) each buyers i buys a best bundle of goods, that is, goods j maximizing Uj;/p;.

The equilibrium solutions for linear Fisher markets were described via the convex program (EG) by Eisenberg
and Gale [9] in 1959; the combinatorial algorithms for this problem and other models rely on the Karush-Kuhn-
Tucker (KKT)-conditions for the corresponding convex programs. Exact optimal solutions can be found, since
these problems admit rational optimal solutions:

max »_m;logz;
ieB
7; < ZU,»jxij VieB
JeG (EG)
inj <1 VjeG
ieB

z, x=>0.

We show that the Eisenberg-Gale convex program (EG), along with all extensions studied so far, falls into the
broader class of concave generalized flows. Moreover, in all these extensions we may replace linear or piecewise
linear concave functions by arbitrary concave ones, still solvable approximately by our algorithm.

For the Eisenberg-Gale program, let us define the graph (V, E) with V=B U G U {t}. Let ji € E whenever
J€G,ieB, U;>0, and set I';;(a) = U as a linear gain function. Also, let it € E for every i € B with
I, (@) = m;log a. Finally, set b; = —1 for j € G, and b; =0 for i € B. The above program describes exactly the
sink version of this concave generalized flow instance with f; = x;; for i € B, j € G and f;, = z;. (To formally
fit into the model, we may add upper capacities u; =1 and u;, =}, U;; without changing the set of feasible
solutions.) Hence our general algorithm gives an g-approximation for this problem. In §8, we show that for
sufficiently small £ we can transform it to an exact optimal solution.
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The flexibility of the concave generalized flow model enables various extensions. For example, we can replace
each linear function U;;& by an arbitrary concave increasing function, obtaining the perfect price discrimination
model of Goel and Vazirani [12]. They studied piecewise linear utility functions; our model enables arbitrary
functions (although the optimal solution may be irrational).

In the Arrow-Debreu Nash bargaining (ADNB) defined by Vazirani [42], traders arrive to the market with
initial endowments of goods, giving utility ¢; for player i. They want to redistribute the goods to obtain higher
utilities using Nash bargaining. The disagreement point is when everyone keeps the initial endowment, guar-
anteeing her ¢; > 0 utility. In an optimal Nash bargaining solution we maximize Y ,.;log(z; — ¢;) over the
constraint set in (EG). Unlike for the linear Fisher model, equilibrium prices may not exist, corresponding to a
disagreement solution. A sophisticated two phase algorithm is given in Vazirani [42], first for deciding feasibility,
then for finding the equilibrium solution.

The convex program for ADNB can be obtained from the Eisenberg-Gale program by modifying the objective
to > ;cplog(z; — ¢;) and adding z; > ¢, for every i € B. In the formulation as a concave generalized flow, this
corresponds to modifying the gain function on the it arcs to I';,(@) =log(a — ¢;) and setting the lower capacity
to ¢;. Hence this problem also fits into our framework. From this general perspective, it does not seem more
difficult than the linear Fisher model.

Nonsymmetric Nash bargaining was defined by Kalai [22]. For ADNB, it corresponds to maximizing
> iepm;log(z; — ¢;) over the constraint set in (EG), for some positive coefficients m;. The algorithm in Vazi-
rani [42] heavily relies on the assumption m; = 1, and does not extend to this more general setting, called
nonsymmetric ADNB. Finding a combinatorial algorithm for this latter problem was left open in Vazirani [42].
Another open question in Vazirani [42] is to devise a combinatorial algorithm for (nonsymmetric) ADNB with
piecewise linear, concave utility functions. Our result generalizes even further, for arbitrary concave utility
functions, since the linear functions U;a can be replaced by arbitrary concave functions.

We assume all values Uj;, m;, and c; are integers. Let U,,,, = max{U;: i € B, j € G}, R =max{m;: i € B},
and C =maxc;. In §8, we show how our algorithm can be used to find an exact solution to the nonsymmetric
ADNB problem in time O(m(m + nlogn)(nlog(nU,,,R) + log C)). The running time bound in Vazirani [42]
for symmetric ADNB (R =1) is O(n®log U, +n*log C).

Let us also remark that an alternative convex program for the linear Fisher market, given by Shmyrev [37],
shows that it also fits into the framework of minimum-cost circulations with a separable convex cost function, and
thus can be solved by the algorithms of Hochbaum and Shanthikumar [19] or Karzanov and McCormick [25].
Recently, Végh [43] gave a strongly polynomial algorithm for a class of these problems, which includes Fisher’s
market with linear utilities and also a generalization called spending constraint utilities. However, this does
not seem to capture perfect price discrimination or ADNB, where no alternative formulations analogous to
Shmyrev [37] are known.

As further applications of the concave generalized flow model, we can take single-source multiple-sink markets
by Jain and Vazirani [20], or concave cost matchings studied by Devanur and Jain [6].

A distinct characteristic of the Eisenberg-Gale program and its extensions is that they are rational convex
programs. We may lose this property when changing to general concave spending constraint utilities. However,
for the case when the existence of a rational solution is guaranteed, one would prefer finding an exact optimal
solution. Section 8 addresses the question of rationality. Theorem 7 shows that under certain technical conditions,
our approximation algorithm can be turned into a polynomial time algorithm for finding an exact optimal
solution. We shall verify these conditions for nonsymmetric ADNB.

4. Background and overview. The minimum-cost circulation problem? is fundamental to all problems and
algorithms discussed in the paper. We give an overview in §4.1. We present the two main algorithmic paradigms:
cycle cancelling and successive shortest paths along with their efficient variants. As already revealed by early
studies of the problem (e.g., Onaga [29] and Truemper [39]), there is a deep connection between generalized
flows and classical minimum-cost circulations: the dual structures are quite similar, and the generalized flow
algorithms stem from the classical algorithms for minimum-cost circulations. In §4.2, we continue with an
overview of generalized flow algorithms, exhibiting some important ideas and their relation to minimum-cost
circulations. We also exhibit here the main ideas of our algorithm for the linear case. Section 4.3 considers a
different convex extension of minimum-cost circulations, when the linear cost function is replaced by a separable
convex one. We show how the two main paradigms extend to this case, using different approximation strategies
of the nonlinear functions. Finally in §4.4 we consider the concave generalized flow problem and discuss the
algorithm by Shigeno [36] and its relation to algorithmic ideas of the previous problems. We emphasize some
difficulties and outline the ideas of our solution.

2 We shall use the term “circulation” to distinguish from other flow problems in the paper.
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4.1. Minimum-cost flows: Cycle cancelling and successive shortest paths. In the minimum-cost circula-
tion problem, given is a directed graph G = (V, E) with lower and upper arc capacities [, u: E — R U {oo},
costs ¢: E — R on the arcs, and node demands b: V — R with }_,.,, b, =0. Let

€=y fi— > fi — b

jijieE jiijeE

A vector f: E— R with [ < f <u is called a feasible circulation, if e; =0 for all i € V. The objective is to
minimize ¢’ f over feasible circulations.

Linear programming duality provides the following characterization of optimality. For a feasible circulation f,
let us define the residual graph G, = (V,E;) with ij € E; if ij € E and f;; <u;, or if ji€ E and [;; < f;.
The first types of arcs are called forward arcs and are assigned the original cost c;;, while the latter arcs are
backward arcs assigned cost —c;;. For notational convenience, we will use f;; = —f; on backward arcs. Then
J is optimal if and only if E, contains no negative cost cycles. This is further equivalent to the existence of a
potential 7: V — R with 7; — m; < ¢;; for all arcs ij € E,.

Two main frameworks for minimum-cost flow algorithms are as follows. In the cycle cancelling framework
(see e.g., Ahuja et al. [2, Chapter 9.6]), we maintain a feasible circulation in each phase, with strictly increasing
objective values. If the current solution is not optimal, the above conditions guarantee a negative cost cycle in
the residual graph; such a cycle can be found efficiently. Sending some flow around this cycle decreases the
objective and maintains feasibility, providing the next solution.

In the successive shortest path framework (see, e.g., Ahuja et al. [2, Chapter 9.7]), we waive feasibility by
allowing e; > 0 or e; < 0; we call such nodes positive and negative, respectively. However, we maintain dual
optimality in the sense that the residual graph of the current pseudoflow contains no negative cost cycles in
any iteration (or equivalently, admits a feasible potential). If there exists some positive and negative nodes, we
send some flow from a positive node to a negative one using a minimum-cost path in the residual graph. This
maintains dual optimality and decreases the total e; value of positive nodes.

For rational input data, both these algorithms are finite, but may take an exponential number of steps (and
might not even terminate for irrational input data). Nevertheless, using (explicit or implicit) scaling techniques,
both can be implemented to run in polynomial time, and even in strongly polynomial time.

A strongly polynomial version of the cycle cancellation algorithm is due to Goldberg and Tarjan [13]. In
each step, a minimum mean cycle is chosen. In dual terms, we relax primal-dual optimality conditions to
7; —m; < ¢; + & for ij € E;, with & being equal to the negative of the minimum mean cycle value, decreasing
exponentially over time.

Polynomial implementations of the successive shortest path algorithm can be obtained by capacity scaling; the
most efficient, strongly polynomial such algorithm is due to Orlin [30]. We describe here a basic capacity scaling
framework by Edmonds and Karp [8], which was the first (weakly) polynomial algorithm for the problem.
Instead of the residual graph E,, we consider the A-residual graph E,(A) consisting of arcs with residual
capacity at least A (the residual capacity is u;; — f;; on a forward arc ij and f;; —[; on a backward arc). The
algorithm consists of A-scaling phases, with A decreasing by a factor of 2 between two phases. In a A-phase,
we iteratively send A units of flow from a positive node s with e, > A to a negative node ¢ with ¢, < —A on
a minimum-cost path in E,(A). The A-phase finishes when this is no longer possible, which means the total
positive excess is at most nA.

In the A-phase, 7; — ; < ¢;; is maintained on arcs of the A-residual graph. When moving to the A/2 phase,
this might not hold anymore, since the A/2-residual graph contains more arcs, namely, the ones with residual
capacity between A/2 and A. At the beginning of the next phase, we saturate all these arcs, thereby increasing
the positive excess to at most (2n+m)A/2. This guarantees that the next phase will consist of at most (2n + m)
path augmentations.

4.2. Linear generalized flows—cycle cancelling and excess transportation. In what follows, we consider
the sink version of the generalized flow problem, with sink # € V. For a pseudoflow f: E — R, let us define
the residual network G, = (V, E;) as for circulations, with gain factor y; = 1/;; on backward arcs. Consider
a cycle C in E;. We can modify f by sending some flow a > 0 around C from some i € V(C). This leaves
e; unchanged if j # i, and increases e; by (y(C) — 1)a, where y(C) =IL,.c7,. If y(C) > 1 then we call C
a flow-generating cycle, and for y(C) < 1, a flow-absorbing cycle, since we can generate or eliminate excess
at an arbitrary node i € C, respectively. The amount of flow that can be generated is of course bounded by the
capacity constraints.
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To augment the excess of the sink 7, we have to send the excess generated at a flow-generating cycle C to ¢.
Hence we call a pair (C, P) a generalized augmenting path (GAP), if (a) C is a flow-generating cycle, i € V(C),
and P is a path in E, from i to ¢; or (b) C =, and P is a path in E, from some node i with ¢; >0 to ¢.
Clearly, an optimal solution f may admit no GAPs. This is indeed an equivalence: f is optimal if and only if
no GAP exists.

The gain factors vy, play a role analogous to the costs ¢, for minimum-cost circulations. Indeed, C is a
flow generating cycle if and only if it is a negative cost cycle for the cost function ¢, = —logy,. The dual
structure for generalized flows is also analogous to potentials. Let us call u: V. — R_jU {oo} with u, =1 a
label function. Relabeling the pseudoflow f by w means dividing the flow on each arc ij going out from i by
;. We get a problem equivalent to the original by replacing each arc gain by 'yf; = ¥;;/;/ ;- The labeling is
called conservative if y{]f <lforallijeE s that is, no arc may increase the relabeled flow.

Assume we have a conservative labeling u so that ¢, =0 whenever i € V —t, u; < oo. Let V' C V denote the
set of nodes from which there exists a directed path to z. It follows that (i) u; < oo for all i € V', and (ii) V'
contains no flow-generating cycles. Consequently, given a conservative labeling, no GAP may exist, and the
converse can also be shown to hold. Note that on V', 7; = —logu; is a feasible potential for ¢, = —logvy, if
and only if u is conservative.

Based on this correspondence, minimum-cost circulation algorithms can be directly applied for generalized
flows as a subroutine for eliminating all flow-generating cycles. This can indeed be implemented in strongly
polynomial time; see Radzik [32] and Shigeno [35]. The additional difficulty for generalized flows is how to
transport the generated excess from various nodes of the graph to the sink #. In the algorithm of Onaga [29],
flow is transported iteratively on highest gain augmenting paths, that is, from i € V with ¢; > 0 on an i — ¢ path P
that maximizes y(P) =11,.p7,. It can be shown that using such paths does not create any new flow generating
cycles. Thus after having eliminated all type (a) GAPs, we only have to take care of type (b). Unfortunately,
this algorithm may run in exponential time (or may not even terminate for irrational inputs). This is due to the
analogy between Onaga’s algorithm and the successive shortest path algorithm—observe that a highest gain path
is a minimum-cost path for —logy,.

The first algorithms to overcome this difficulty and thus establish polynomial running time bounds were the
two given by Goldberg et al. [14]. One of them, Fat-Path, uses a method analogous to capacity scaling. A path P
in E, from a node i to 7 is called A-fat, if assuming unlimited excess at i, it is possible to send enough flow
along P from i to ¢ so that e, increases by A.

The algorithm consists of A-phases, with A decreasing by a factor of 2 for the next phase. In the A-phase,
we first cancel all flow generating cycles. Then, from nodes i with ¢; > 0, we transport flow on highest gain
ones among the A-fat paths. This might create new flow-generating cycles to be cancelled in the next phase.
Nevertheless, it can be shown that at the beginning of a A-phase, ¢} — e, <2(n+ m)A for the optimum value
e’ and thus the number of path augmentations in each A-phase can be bounded by 2(n + m). Arriving at a
sufficiently small value of A, it is possible to obtain an optimal solution by a single maximum flow computation.

The basic framework of Onaga [29] and of Fat-Path, namely, using different subroutines for eliminating flow-
generating cycles and for transporting excess to the sink, has been adopted by most subsequent algorithms, e.g.,
Goldfarb and Jin [15], Goldfarb et al. [18], Tardos and Wayne [38], Fleischer and Wayne [10], and Radzik [33].
Among them, Goldfarb et al. [18] is an almost purely scaling polynomial time algorithm, but it still needs an
initial cycle-cancelling phase as in Onaga [29].

In contrast, our algorithm does not need any cycle cancelling, and adapts Fat-Path to a pure successive shortest
paths framework. The successive shortest paths algorithms for minimum-cost circulations start with an infeasible
pseudoflow, having both positive and negative nodes. To use an analogous method for generalized flows, we
have to give up the standard framework of algorithms where e; > 0 is always maintained for all i € V —¢. This is
the reason why we use the more flexible symmetric model: we start with possibly several nodes having e; < 0,
and our aim is to eliminate them. An important property of the algorithm is that we always have to maintain
w; =1/M; for e; < 0; for this reason we shall avoid creating new negative nodes.

Similar to Fat-Path, we use a scaling algorithm. In the A-phase, we consider the residual graph restricted to
A-fat arcs, arcs that may participate in a highest gain A-fat-path, and maintain a conservative labeling u with
yi’; <1 on the A-fat arcs. When moving to the A/2-phase, this condition may get violated because of A/2-fat
arcs that were not A-fat. Analogously to the Edmonds-Karp algorithm, we modify the flow by saturating each
violated arc and thereby restitute dual feasibility. However, these changes may create new negative nodes and
thus violate the condition u; = 1/M, for e¢; <0, which we must maintain.

We resolve this difficulty by maintaining a “security reserve” of d;Au; in each node i (d; is the number of
incident arcs). This gives an upper bound on the total change caused by restoring feasibility of incident arcs
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in all subsequent phases. We call a node A-positive if e; > d;,Au;, A-negative if e; < d;Ap;, and A-neutral if
e; = d;Ap;. A-negative nodes may become negative (e¢; < 0) at a later phase, and therefore we maintain the
stronger condition w; = 1/M, for them. We send flow from A-positive nodes to A-negative and A-neutral ones.
Thereby we treat some nodes with ¢; > 0 as sinks and increase their excess further; however, as A decreases,
such nodes may gradually become sources.

For the sink version, described in §7, we perform this algorithm with M, =B"+ 1 if i #¢t and M, = 1.
We shall show that this returns an optimal solution. We remark that the highest gain path algorithm (Goldfarb
et al. [18]) can also be modified to a purely scaling algorithm using the symmetric formulation that enables to
start from an arbitrary nonfeasible solution and thereby eliminate the initial cycle-cancelling phase.

4.3. Minimum-cost circulations with separable convex costs. A natural and well-studied nonlinear exten-
sion of minimum-cost circulations is replacing each arc cost ¢;; by a convex function C;;(-). We are given a
directed graph G = (V, E)) with lower and upper arc capacities /, u: E — R, convex cost functions C;;: [1;;, u;;] —
R on the arcs, and node demands b: V — R with },., b; = 0. Our aim is to minimize }_;;., C;;(f;;) for feasible
circulations f. This is a widely applicable framework; see Ahuja et al. [2, Chapter 14].

This is a convex optimization problem, and optimality can be described by the KKT conditions. Let C;T (a)
denote the left derivative of C;;. As before, for a feasible circulation f define the auxiliary graph G, = (V, E,).
Let C;; denote the original function if ij is a forward arc and let C;;(a) = C;;(—a) on backward arcs; f is
optimal if and only if there exists no cycle C in E, with 3_, . C;(f;) <0. In dual terms, f is optimal if and
only if there exists a potential 7: V — R with 7; — 7, < C;(flj) for all ij € E,.

Both the minimum mean cycle cancellation and the capacity scaling algorithms can be naturally extended to
this problem with polynomial (but not strongly polynomial) running time bounds. However, these two approaches
relax the optimality conditions in fundamentally different ways.

Cycle cancellation was adapted by Karzanov and McCormick [25]. The algorithm subsequently cancels cycles
in E, with minimum mean value with respect to the C,-}r (f;;) values. The only difference is that the flow
augmentation around such a cycle might be less than what residual capacities would enable, in order to maintain

7, —m <C;(f;)+e VijeE ()
for the current potential 7 and scaling parameter &.

For capacity scaling, Minoux [26] used the following approach, that was later extended further by Hochbaum
and Shanthikumar [19]; see also Ahuja et al. [2, Chapter 14.5]. The algorithm consists of A-phases. In the
A-phase, each C;; is linearized with granularity A.

Let E;(A) denote the A-residual network. We will maintain A-optimality, that is, there exists a potential

such that
Ci(f +8) - C(fiy)
m— T < A
Let 6, (ij) denote the quantity on the right-hand side. Consider an arc ij for which equality holds. If we increase
Jij by A, the resulting pseudoflow remains A-optimal. We will always send A units of flows from a node s
with e, > A to a node ¢ with ¢, < —A on a minimum-cost path in E,(A) with respect to 0,(ij). By the above
observation, this maintains A-optimality.

When moving to the next scaling phase replacing A by A/2, we change to a better linear approximation of
the C;;’s. Therefore, (3) may get violated not only because E,(A/2) contains more arcs than E;(A) does, but
also on arcs already included in E;(A). Yet it turns out that modifying each f;; value by at most A/2, (3) can
be reestablished. This creates new (positive and negative) excesses of total at most mA.

Recently, Végh [43] gave a strongly polynomial capacity scaling algorithm for a class of objective func-
tions, including convex quadratic objectives, and Fisher’s market with linear and with spending constraint util-
ities (based on Shmyrev’s formulation Shmyrev [37]). Let us also remark that the results of Karzanov and
McCormick [25] and Hochbaum and Shanthikumar [19] actually address much more general problems: mini-
mizing convex objectives over polyhedra given by matrices with bounded subdeterminants. The framework of
Hochbaum and Shanthikumar [19] needs weaker assumptions on the objective function and on the oracle.

Vije E,(A). 3)

4.4. Concave generalized flows. As we have seen, both the cycle cancelling and capacity scaling approaches
for minimum-cost circulations naturally extend to separable convex cost functions. Similarly, our algorithm in
§6 for concave gain functions is a natural extension of the generalized flow algorithm in §5.

Nevertheless, we were not able to extend any of the previous generalized flow algorithms to concave gains.
Shigeno’s [36] approach was to extend the Fat-Path algorithm of Goldberg et al. [14]. However, Shigeno [36]
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obtains polynomial running time bounds only for restricted classes of gain functions. The algorithm consists of
two procedures applied alternately similar to Fat-Path: a cycle cancellation phase to generate excess on cycles
with positive gains, and a path augmentation phase to transport new excess to the sink in chunks of A. For
both phases, previous methods naturally extend: cycle cancelling is performed analogously to Karzanov and
McCormick [25], whereas path augmentation to Hochbaum and Shanthikumar [19]. Unfortunately, fitting the
two different methods together is problematic and does not yield polynomial running time.

The main reason is that the two approaches rely on fundamentally different kinds of approximation of the
nonlinear gain functions. Whereas for generalized flows, a cycle-cancelling phase completely eliminates flow-
generating cycles, here we can only get an approximate solution allowing some small positive gain on cycles at
termination. In terms of residual arcs, we terminate with a condition analogous to (2) for concave cost flows.
However, the path augmentation phase needs a linearization of the gain functions analogous to (3). Notice that
for £ =0, (2) implies (3) for arbitrary A. Yet if some small error € > 0 is allowed, then no general guarantee
can be given so that (3) holds for a certain value A.

For this reason, our goal was to avoid using the two different frameworks simultaneously. It turns out that our
scaling-type linear generalized flow algorithm (outlined in §4.2) smoothly extends to this general setting. We
use the local linearization 0} (ij) of I; used by Shigeno [36], an analogue of (3). In the A-phase, we consider
the graph of A-fat arcs, and maintain 6% (ij) <1 on them.

When moving from a A-phase to a A/2-phase in the linear algorithm, the only reason for infeasibility is due
to A/2-fat arcs that were not A-fat. In contrast, feasibility can be violated on A-fat arcs as well, as Oﬁ(i j) <
1 <6} 1»(ij) may happen because of the finer linear approximation of the gain functions in the A/2-phase.
Fortunately, feasibility can be restored in this case as well, by changing the flow on each arc by a small amount.

5. Linear generalized flow algorithm. In this section, we investigate the symmetric formulation of the
generalized flow problem. In describing the optimality conditions, we also allow infinite M; values to incorporate
the sink version. However, in the algorithmic parts, we restrict ourselves to finite M, values.

We describe optimality conditions in §5.1. Concepts and results here are well known in the generalized flow
literature, thus we do not include references. Section 5.2 introduces A-fat arcs and A-conservative labelings,
the feasibility framework in the A-phase. Section 5.3 describes the subroutine Tighten-Label, an adaptation of
Dijkstra’s algorithm that finds highest gain A-fat paths. The main algorithm is exhibited in §5.4. Analysis and
running time bounds are given in §5.5. The final step of the algorithm is deferred to §5.6, where we show that
when the total relabeled excess is sufficiently small, an optimal solution can be found by a single maximum
flow computation.

5.1. Optimality conditions. Let G = (V, E) be a network with lower and upper capacities [, u, gain fac-
tors vy, node demands b, and penalty factors M. In the sequel, we assume all lower capacities are 0. Every
problem instance of symmetric generalized flows can be simply transformed to an equivalent one in this form
in the following way. For each arc ij € E, increase the node demand b; by [;; and decrease b; by vy,;1;;. Modity
the lower capacity of ij to 0 and the upper to u;; —I;;.

For a pseudoflow f, we define the residual network G, = (V, E,) as follows. Let ij € E,, if ij € E and
fij <wuy orif ji € E and f;; > 0. The first type of arcs are called forward arcs, and the second type are the
backward arcs. (Recall that we have forbidden pairs of oppositely directed arcs in the input, and hence these
notions are well defined.) For a forward arc ij, let y;; be the same as in the original graph. For a backward arc
Ji, let y; =1/v,;. Also, we define f;; = —v,; f;; for every backward arc ji € E . For backward arcs, the capacities

are l; = —7y;u;; and u; = 0. By increasing (decreasing) f;; by @, we mean decreasing (increasing) f;; by a/vy;;.
Let P =i, ..., i, be a walk in the residual graph E,. By sending « units of flow along P, we mean increasing
each f; by a[lo<,<s Vi,,- We assume a is chosen small enough so that no capacity gets violated. Note that

this decreases e; by «, increases ¢; by @[]y, Vi, and leaves the other e; values unchanged.

Let C =1ij,...,i_i be a cycle in E;. Sending a units of flow on C from i, modifies only ¢, , increasing
by (y(C) — 1)a for y(C) =[l,ec 7.; C is called a flow-generating cycle if y(C) > 1. On such a cycle for any
choice of i, € V(C), we can create an excess of (y(C)— 1)a by sending « units around (assuming that « is
sufficiently small so that no capacity constraints are violated).

The pair (C, P) is called a generalized augmenting path in the following cases:

(a) C is a flow-generating cycle, i, € V(C), t € V is a node with e, <0, and P is a path in E, from i, to ¢
(iy=t, P =@ is possible);

(b) C =@, and P is a path between two nodes s and ¢ with e, > 0, ¢, <O0;

(¢) C=@, and P is a path between s and ¢ with e, <0, ¢, <0 and y(P) =[],cc v. > M,/ M,.
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Note that GAPs were already defined in §4.2 for the sink version of the problem. The definition here is
slightly different because we do not have a distinguished sink anymore; in particular, type (¢) GAPs do not
appear in the sink version.

LEmMMA 1. If f is an optimal solution, then no GAP exists.

ProofF. In case (a), we can send some a > O units of flow around C from i, and then send the generated
(y(C) — 1) excess from i, to ¢ along P. For sufficiently small positive values of «, this is possible without
violating the capacity constraints and it decreases the excess discrepancy. In case (b), we can decrease the
excess discrepancy at ¢ while only decreasing a positive excess at s. In case (c), although M k, increases, M,k,
decreases by a larger amount. [

The dual description of an optimal solution is in terms of relabelings with a label function u: V — R_,U {o0}.
For each node i € V, let us rescale the flow on all arcs ij € E by u;: let fij-* = f;j/m;- We get a problem
equivalent to the original one with relabeled gains 'y{; = V;;M:/ ;- Accordingly, the relabeled demands, excesses,
and capacities are b}’ :=b,/u;, e} = e¢;/p;, and uj; := u;;/p;. A relabeling is conservative, if for any residual
arc ije E s y{j <1, that is, no arc may increase the relabeled flow. Furthermore, for each i e V, u;, > 1/M, is
required and equality must hold whenever e¢; < 0.

We use the conventions co-0=0 and oo/co = 0. Accordingly, if u, = oo, we define b}’ = ¢}’ =0, and y}; =0
for all arcs ji € Ef. If ij e Ef, W, =00, and w ; < 00, then y{; = oo. Consequently, if p is conservative, then
p; < oo for any i € V for which there exists a path in E, from i to any node 7 € V with ¢, <0. Also, if p is
conservative, there exists no flow generating cycle on the node set {i: u; < oo}. This is because for a cycle C,
Y(C) = HijeC Yii = I—[ijeC 75

THEOREM 2. For a pseudoflow f, the following are equivalent:

(1) f is an optimal solution to the symmetric generalized flow problem.
(i) E; contains no generalized augmenting paths.
(iii) There exists a conservative relabeling p with e; =0 whenever 1/M; < ., < co.

Proor. The equivalence of (i) and (iii) is by linear programming duality, with w, being the reciprocal of the
dual variable corresponding to the inequality e; + k; > 0; (i) implies (ii) by Lemma 1.

It is left to show that (ii) implies (iii). If the excess discrepancy is O (that is, e; > 0 for all i € V), then u = oo
is conservative. Otherwise, let N = {t: e, < 0}. If E, contains no directed path from i € V to N, then let u; = co.
For the other nodes i € V, let u; be the smallest possible value of 1/(y(P)M,) for y(P) =[],cp V., Where P is
a walk in E, starting from i and ending in a node # € N. By (ii), this is well defined, since all cycles can be
removed from a walk P without decreasing y(P).

The relabeling w clearly satisfies y;;u;/pm; < 1. We shall prove u; > 1/M; for each i € V and u, =1/M, for
each t € N. If ¢; > 0, then no such path P may exists as it would give a type (b) GAP. Consequently, u; = co. If
e; <0, then w; > 1/M, as otherwise the optimal P defining w; would be a type (c) GAP. Finally, if € N, then
u, < 1/M, as the gain of the path P = & is defined as 1. [

5.2. A-conservative labels. The residual capacity of arc ij € E, is u;; — f;; (for a backward arc ij, this is
v,:fj)- In contrast, we define the fatness of ij € E; by s,(ij) := v;;(u;; — f;;) (on backward arcs, s,(ij) = f;;)-
The fatness expresses the maximum possible flow increase in j if we saturate ij. This notion enables us to
identify arcs that can participite in fat paths during the algorithm. In accordance with the other variables, the
relabeled fatness is defined as sﬁ(ij) =5,(ij)/ ;-

For the scaling parameter A > 0, we define the following relaxation of conservativeness. Let u: V — R_,U{oo}
be a label function. Recall that d; is the total number of arcs incident to i. A node i € V is called A-negative if
el <d,A, A-neutral if &' = d;A, and A-positive if e} > d;A.

The A-fat graph E’; (A) is the set of residual arcs of relabeled fatness at least A:

EF(A) :={ij € E;: s}(ij) = A}.

Arcs in E}‘ (A) will be called A-fat arcs. The labeling u is called A-conservative, if yf; <1 holds for every
ij € E}L(A), and w; > 1/M; for all i € V. Further, for every A-negative node i, we require u; = 1/M,.

By a O-conservative labeling we mean a conservative one. An important difference between conservative and
A-conservative labelings for A > 0 is that nodes with u; = oo may not be present in the latter one, because
of the constraint on A-negative nodes. Let Ex*(f) :=Y",., max{e!, 0} and Ex}(f) :=>,., max{e! — d;A, 0}
denote the total relabeled excess and total modified relabeled excess for A, respectively. Note that Ex*(f) <
Exk(f)+2mA.
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_LEMMA 2. Let f be a pseudofiow with a A-conservative labeling . Let 0 < A" < A. Then there exists a flow
f such that w is A'-conservative for f and Exy,(f) < Ex\(f)+3m(A —A").

PROOF. We shall construct f by modifying f on each arc independently. For A-fat arcs, A-conservativeness
guarantees y}; < 1. Consider an arc ij € E}(A’) — Ef (A), that is,

A’f'y;;(uﬁ—]‘;) <A,

and assume y;; > 1. Let us set fij = minf{u;, f;; + ((A — A)u;)/v;}. Then ij cannot be A’-fat, since either
ij € Eg, or yj; (ul; —fﬁ;) <A

We have f; _J;Z = 'yf/‘(f_fj —f)<A—-A" Also, ffj — ff <A — A’ holds because of y/; > 1. We also have to
consider the possibility that ji is A’-fat for f. In this case, conservativeness is guaranteed since y]‘-f- =1/ y{; < 1.

To complete the proof of A’-conservativeness, we show that f has no A’-negative nodes with w, > 1/M,. As
we have seen, both if and yf; f: change by at most A — A’. Consequently for every i € V, the total possible
change of the relabeled flow on arcs incident to i is d;(A — A’). A node is nonnegative for A if ¢! > d;A and
for A’ if e > d;A’. Therefore, a A-nonnegative node cannot become A’-negative, proving the claim.

Further, Ex}, (f) < Ex\(f)+ Y ;cy d:(A—A’), and on each arc, at most A — A’ units of new excess is created.
This gives Ex%, (f) < ExX(f) +3m(A—A"). O

The proof also gives a straightforward algorithm for finding such an f. Let Adjust(A, A’) denote this sub-
routine. In particular, Adjust(A, 0) finds an f for which w is a conservative labeling. Further, if there are no
A-negative nodes for f and u, then f is a O-discrepancy optimal solution.

5.3. A-canonical labels. An arc ij is called tight if 'yf; =1, and a directed path is tight if it consists of tight
arcs. Given a pseudoflow f, a conservative labeling u is called canonical, if for each i € V with u; < oo, there
exists a tight path in E, from i to a negative node. Analogously, for A > 0, a labeling is called A-canonical, if it
is A-conservative, and for each i € V there exists a tight path in E}L (A) from i to some A-negative or A-neutral
node. Such a path is a highest gain A-fat path as in Goldberg et al. [14]. (Note that u, < oo for every i € V
for A-canonical labelings, and also that paths are allowed to end in A-neutral nodes, in contrast to canonical
labelings.) By O-canonical labeling we mean a canonical one.

Given a A-conservative relabeling w that is not canonical, Tighten-Label(f, u, A) replaces w by a A-canonical
labeling w" with w! > u; for each i e V.

We first describe Tighten-Label(f, u,0), when it is essentially a multiplicative interpretation if Dijkstra’s
algorithm. Let V' C V be the set of nodes i with a directed path in E, from i to a negative node. For nodes in
VAV’, let us set w; =o0. Let S € V' be the set of nodes i for which there exists a (possibly empty) tight path
for the current w to a negative node. In each step of the algorithm, S will be extended by at least one element,
and we terminate if S =V’, when the current relabeling is canonical.

If V'\S # &, let us multiply w, for each i € V'\S by « defined as

a::min{iﬂ: ijeE;, ieV'\S, jeS}.
i

By the definition of §, a > 1, and after multiplying by «, at least one arc ij € E, with i € V'\S, j € § will
become tight. Tight arcs inside S also remain tight, hence S is extended by at least one node. Also, the choice
of o guarantees that u remains conservative. Note that arcs with j € V\S may disappear from E}‘ (A) as their
fatness decreases.

Let us now describe Tighten-Label(f, i, A) for A > 0. The main difference is that increasing w; may turn a
A-positive node into A-neutral. We have to stop increasing u; at this point and add i to S. (This is in accordance
with the goal that we allow tight paths to A-neutral nodes as well.) In each phase of the algorithm, let S €V
denote the subset of nodes that have a (possibly empty) tight path in E}* (A) to a A-negative or A-neutral node.
S is initialized as the set of A-negative and A-neutral nodes and is extended by at least one element per phase.
The algorithm terminates once S=V.

In every phase, we multiply u; for every i € V\S by the same factor @ > 1. Consider an arc ij € E;(A) with
i€ V\S, jeS. This must satisfy y;; < 1. Increasing u, increases y;;. Note that the fatness s} (ij) = s,(ij)/u;
is not changed as it is not dependent of w,. By definition, all nodes in V\S are A-positive. When increasing
W;, et decreases and therefore i may become A-neutral. At this point, we have to stop to avoid creating new
A-negative nodes. Let us define

1 1
a:=min{min{w: ijeEF(A), i€ V\S,jeS},min{de—’A: i€ V\S}}. 4)

ij i
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Algorithm Symmetric Fat-Path
foricVdou, <~ 1/M;
for ij € E do f; < 0;
A<« MB>+1;
while (2n+46m)A > 1/B" do
do
Tighten-Label(f, w, A);
D« {ieV:e>(d,+1)A};
Ny« {ieV: e <dA};
pick s € D, t € N, connected by a tight path P;
send A units of flow along P;
while D # &;
Adjust(A, A/2);
A< A/2;
Adjust(A, 0);
Tighten-Label(f, u, 0);
compute a maximum flow from nodes {s € V: e, > 0} to nodes {r € V: ¢, < 0} using tight arcs for u;
return optimal primal solution f and optimal dual solution w.

FIGURE 1. The algorithm for symmetric linear generalized flows.

Clearly, o > 1, and after multiplying each u; by a for i € V\S, either we obtain a new A-neutral node in V\S,
or at least one arc ij € E, with i € V\S, j € § will become tight. Tight arcs inside S also remain tight, and their
capacities are unchanged, hence S is extended by at least one node. Also, the choice of a guarantees that u
remains A-conservative.

Note that in Tighten-Label(f, u, 0) we first identified the set V' C V, and set u; = oo for i € V\V'. In contrast,
for A > 0 we skip this step and increase u; on all nodes of V\S. The reason for this is that for A > 0, every
i € V\S becomes A-neutral if u; is sufficiently increased; the second term in the definition (4) of @ accounts
for this effect. Therefore no u; values will be set to oc.

Further, if A > 0, at the termination of Tighten-Label(f, ., A), there must exist some A-negative or A-neutral
nodes. Indeed, if we start with S = &, then some nodes must become A-neutral in the first phase.

5.4. Description of the algorithm. The algorithm is shown in Figure 1. We start with w;, = 1/M, for every
node i € V, and f = 0. The algorithm consists of A-phases, and A decreases by a factor of 2 between two
phases. The initial value of A is MB%+ 1. Once (2n+6m)A < 1/B™, then an optimal solution can be found by
a single maximum flow computation, as shown in §5.6. In this case we terminate.

During the A-phase, we maintain a pseudoflow f along with a A-conservative labeling w. The u; values
can only increase. Let N, denote the set of A-negative and A-neutral nodes, and D the set of nodes i with
e > (d, + 1)A. The A-phase consists of a sequence of iterations until D becomes empty. In every iteration of
the algorithm, we update u to a A-canonical labeling by calling Tighten-Label(f, w, A). Note that after Tighten-
Label(f, u, A), we have N, # @ as remarked above; further, there exists a tight path from every node in v e V
to a node in N,. If D # @ still holds, we pick an arbitrary s € D, and send A units of flow from s to some
A-negative or A-neutral 7 € N, on a tight path P. At the end of the A-phase, we modify f by Adjust(A, A/2),
and proceed to the A/2-phase.

5.5. Analysis.
CLAam 1. The initial p is A-conservative, and A-conservativeness is maintained during the entire A-phase.

PrROOF. At the beginning s}‘ (ij) = yyu;/m; < MB> < A for every ij € E, and E, contains no back-
ward arcs. Consequently, E}L (A) = @ and A-conservativeness trivially holds. Also, u; = 1/M; holds for every
node i. Tighten-Label(f, w, A) clearly maintains A-conservativeness. This is also maintained when sending flow,
as we only use tight arcs. At the end of the A-phase, Adjust(A, A/2) transforms f to a A/2-conservative
pseudoflow. O

CLAIM 2. At the beginning of every A-phase, Ex\(f) < (2n+3m)A.

PrOOF. In the first phase, Ex\(f) < M (X ;cy b;) < MBn < (2n+ 3m)A. Once we finish all iterations in the
A-phase, D = @ implies Exk (f) < nA. In Adjust(A, A/2), we increase the excess by at most 3mA/2 (Lemma 2.)
Hence at the beginning of the A/2-phase, Ex} 2 (f) < (2n+3m)A/2, proving the claim. [
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LEMMA 3. A A-phase consists of at most 2n + 3m iterations.

PrOOF. Let W(i):=|el'/A] —d, if &/ > (d;+ 1)A and ¥ (i) := 0 otherwise. Consider the potential function
V=Y., V(i). Clearly, ¥ < Ex\(f)/A and therefore ¥ <2n+ 3m holds at the beginning by Claim 2. In the
relabeling steps, ¥ may only decrease, and in every path augmentation, it decreases by exactly 1. O

THEOREM 3. The algorithm runs in O(m(m+ nlogn)(mlog B +log M)) time.

ProoF. The value of A always decreases by a factor of 2, its initial value is MB?, and we terminate if
Exi(f) < 1/B™. Hence the number of phases can be bounded by O(mlog B+ logM). The number of iterations
in one phase is O(m) by Lemma 3. The running time of an iteration is dominated by the Tighten-Label step,
that can be done in O(m + nlogn) time following Fredman and Tarjan’s [11] implementation of Dijkstra’s
algorithm. The step Adjust(A, A/2) can be performed in O(m) time. At termination, we need one further
maximum flow computation as described in the next section; it can be done in running time O(n’) (Ahuja
et al. [2, Chapter 7]). O

5.6. Moving to an optimal solution. If (2n 4 6m)A < 1/B™ at a certain iteration of the algorithm, then by
Claim 2, ExZ (f) +3mA < 1/B™ holds. Next, we transform f to f by Adjust(A, 0), so that u is a conservative
labeling for f. By Lemma 2, Ex*(f) < 1/B™ follows. Then Tighten-Label(f, u, 0) transforms u into a canonical
labeling. As shown below, a single maximum flow computation yields an optimal solution. This is the standard
technique of how most algorithms in the literature terminate.

Given a canonical labeling u for f,let P:={i € V:e¢; >0, u; < oo} and N :={i € V: ¢; < 0}. Let us construct
the following maximum flow instance. Let V :=V U {s, ¢}, and let E consist of all tight arcs in E > plus an si
arc for every i € P, and a ti arc for every i € N. Let us set the capacity equal to the relabeled residual capacity
on the tight arcs in E; for every arc si, let us set the capacity equal to ¢! and for every arc it, equal to —e!".
Let us compute a maximum flow g from s to 7 in this network, and modify f; by g;u; on every ij € E,. Let f’
denote the resulting pseudoflow.

LEMMA 4. The resulting pseudoflow f' is an optimal solution.

ProoF. Since flow was sent only on tight arcs, w is also conservative for f’. If there are no more nodes i
with e/ (f’) > 0, then by Theorem 2, f” is optimal. Assume now P’, the set of such nodes for f’ is nonempty.

Let § C V be the set of nodes reachable from P’ using tight residual arcs in E,. By optimality, S contains no
node with negative excess. If an arc ij € E leaves S then either ij is saturated, that is, f}; = u;;, or 7!1 <1 and
fl; =0. Let F, denote the set of these saturated arcs. Similarly, if ij € E enters S, then f.’ =0 must hold. Also,
on all arcs ij with i, j € S, f}, > 0 either y}; =1 or f/; =u;;. Let F, denote the set of such arcs with I <uy
(and yj; = 1), and F, the set of those with f;; = u;;. Let ¢;'(f") denote the excess with respect to the flow f.
Therefore,

0= B () =Sl =X ( X s S o)

ieS ieS \j:jieE JiijeE
= Z (’Yﬁf,‘,i” - j,i#) + Z “5(')’5 -1 - Z “ij - Zblﬂ
ijeF; ijek, ijek, ieS
Yij 1 )
=2 uy( = —— Z Z L ®)
ijeF ](ru‘j M ijeky l“'z pry iy

Let B* < B™ denote the product of the denominators of the y,’s. We claim that every term in the above
expression is an integer multiple of 1/B*. Indeed, using that w is a canonical labeling for f, there exists a
tight path P; from each node i to a negative node 7. Then 1/u; = M,y(P;) and is hence an integer multiple
of 1/B*. Similarly, every v;;/u; is also an integer multiple of 1/B”. For this, note that since 'y,‘; # 1, the arc ij
cannot be contained on the tight path P,. Since the u;’s and b;’s are integers, this verifies the claim. By the
assumption of the lemma, 0 < Ex*(f") < Ex*(f) < l/B’” < 1/B*. This implies Ex*(f’") =0, that is, u; = oo
whenever ¢, > 0. (Note that the subroutine Tighten-Label(f, w, 0) might set certain labels to co.) By Theorem 2,
this shows optimality. [

6. Concave generalized flows algorithm. We describe the algorithm in the same structure as for the linear
case: §6.1 presents the optimality conditions; A-conservative and A-canonical labels are discussed in §§6.2 and
6.3, respectively. Section 6.4 presents the algorithm, and §6.5 gives its analysis.
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6.1. Optimality conditions. The characterization of optimality was given in Shigeno [36]; we have to mod-
ify the results slightly as we use the symmetric formulation. Let us call an arc ij € E immense, if I';;(l;;) = —o0
and other arcs regular. First, let us transform the problem to an equivalent instance with (i) /; = 0 for every arc
and T’;;(0) = 0 for every regular arc; and (ii) every gain function I; is strictly monotone 1ncreasmg on [0, uu]

For (1) on each arc ij € E, let us replace u;; by u;; —1;; and [;; by 0. If ij is a regular arc, we modify the gain
function to I';(a + lu) [;(1;), and if ij is an immense arc, to ;j(a+1;). Accordingly for every i € V, let us
increase b; by > iijeE u’ and decrease it by the sum of the I';( ﬂ) s on regular arcs.

For (ii), let us deﬁne u; =inf{p: 0 <p <uy, U(p) [;;(u;)}. By continuity, I;(it;;) = I};(u;;), and T};(u;;)
is strictly monotone increasmg on the interval [0, i;;]. Let us replace u;; by it;; < u,;.

For a pseudoflow f: E — R, we define the residual network G, = (V, E) identical as for the generalized flow
setting: ij € E, if ij € E and f;; <u,; or ji € E and f; > 0. For notational convenience, we define f;; = —T};(f;;)
on backward arcs. We also define the function I';(@): [—T};(u;;), —T};(0)] — [—u;, 0] by

Fji(a) = _Fi]_'l(_a)'

lj’

Hence T';(f};) =
The concavity of F implies that for each 0 < & < u;;, there exists the right derivative, denoted by I"J(a), and
for 0 < a < u;;, there ex1sts the left derivative I7; (@). If 0 <A < A, then

Lj(a+ A7) —Tj(a) - Ljla+A)— Fij(a)

l]’

< < . =T/ (@), (62)
rij(a) - Fij(a —A) - Fij(a) (a A)
A = A =T (@) (6b)

for O0<a<u;—AandforA'<a< s respectively. Furthermore, if 0 <o < o’ < u;
I (a) <Ty; (a) The following claim is easy to verify.

Cram 3. For any ij € E with 0 < f,; <uy, Tj (f;) =1/T; (f;), T (f,) =1/T;;(f;). O

then I (&) <T}; (') <

lj’

Let P =iy, ...,i be a walk in the auxiliary graph E,. By sending « units of flow along P, we mean the
following. First we increase f;; by a and set B =T, (f;; +@) — I, (f;;) to be the flow arriving at i;. In
step h=1,...,k—1, we increase the flow on i,i,,, by B and set the new value of Bas I, ; (f;.. +B)—

I.. (f., ). We assume « is chosen small enough so that no capacity gets violated. Let f** denote the
hth+] hth+1
modified flow.

If C=iy,...,i_, is a cycle in E,, then by sending a units of flow around C from i, we mean sending «
units on the walk iy, . .., i,_,i,. This modifies ¢; only in node i,: if the flow increase from i,_,i, is bigger than
a, then €, increases, and if it is smaller then it decreases. The next lemma characterizes when e, can increase.
For an arbitrary walk P in E;, let I (P) =T, I, (f,).

LEMMA 5. Let C be a cycle in E; with i € V(C). If T} (C) > 1 then e; can be increased by sending some
flow around C. If 1"; (C) <1, then it is not possible to increase e; by sending any amount of flow around C.

Since this property is independent from the choice of i, we simply say that C is a flow generating cycle if
Ff+ (C) > 1. The lemma is an immediate consequence of the following claim.

Cram 4. Let P =iy, ..., I be awalk in E;. For any value of a > 0, the flow increase in iy for fePisat
most Fjﬁ’ (P)a. On the other hand, for any € > 0 there exists a 8 > 0 so that for any 0 < a <8, f* increases
e; by at least (T (P) — &)a.

ProOF. The first part is trivial by concavity. We prove the second part by induction on the subpaths P, =
ig,...,i, for h=0,...,k. There is nothing to prove for & = 0; assume we have already proved it for P,_,.
We want to find a 6 > 0 for some & > 0 satisfying the claim for P,. First, it is possible to pick a small enough
&* > 0 such that

AP —e < (T, (fi i) — )T (L) — &9). (7
By the definition of I‘l:r i, there exists a 6* > 0 such that for any 0 < 8 < &*,
( iy 1zh(f;h llh) - € )B— i ]zh( in_1ip +ﬁ) lh l’h(-ﬂh—lih)' (8)

By induction for P,_, and &*, we can choose a small enough 6 > 0 such that we have the following properties
for every 0 < @ < &: I'/(P,_ 1)oz < &*, and the increase of e,_; for f*"-1 is at least B = (I'/ (P,_;) — ")
Then (7) and (8) show that for 0 <@ <8, f** increases e; by at least (I'/ (P) —g)a. O



-~
o)
oo
n ©
‘gm
SE
59
© c
o =
£z
5
.
e
O =
%‘.{:
oi—'
S
23
N
> >
8—«5
(SIN°2)
» -
= 0
£ 0
o2

o)
5 a
Q <
= O
D 'n
T .2
=

)
go.
o2
T ©
T p
wx
<o)
- =
S o
P
£T
(o2 =)
= O
> C
&
0§
ﬁ‘&s’
o £
e)
(S
Ec_u
mC
O s
L=
235
o]
<

Végh: Concave Generalized Flows and Applications
Mathematics of Operations Research 39(2), pp. 573-596, © 2014 INFORMS 587

The definition of GAPs is identical to the linear case, with the only difference that I‘;r (P) > M,/M, instead
of y(P) > M,/M, in case (c).
The following lemma can be proved similarly as Lemma 1.

LEMMA 6. If f is an optimal solution, then no GAP may exist. U

Relabelings are also defined analogously as for generalized flows. Given w: V — R_, U {oc}, let us define
; = fij/m; for each arc ij € E. We get problems equivalent to the original with relabeled functions F,-‘; () :=

[;(m;@)/p;. Accordingly, the relabeled demands, excesses, and capacities are bl :=b;/u;, € :=e;/p;, and
uf; = u;;/|; A relabeling is conservative, if for any residual arc ij € E,, Fi’f( 5’ ) <1, that is, no edge may
increase the relabeled flow. Furthermore we require u; > 1/M, for every i € V with equality whenever ¢; < 0.

We use the same convention for infinite u; values as for generalized flows. If u; = co, we define b =€/ =0,
ul; =0 for ij € E, and furthermore T (f%) =0 for all arcs ji € E,. Finally, for ij € E, with p, = 00, p1; < o0,
let T () = oo.

If w is conservative, then if for a node i € V there exists a path from i to a node t € V with e, < 0, then
u,; < oo. The following claim is also easy to verify.

CLame 5. T4 (@) = (/)T (@), and T () = (/)T (a). O

This claim implies that for an s — ¢ walk P, I‘jﬁ”(P) = (u,/m )T/ (P), and thus for a cycle C, F}”(C) =
Ff (C).
THEOREM 4 (SHIGENO [36]). For a pseudoflow f, the following are equivalent:
(1) f is an optimal solution to the symmetric version.
(i) E; contains no generalized augmenting paths.
(iii) There exists a conservative labeling pu with e; =0 whenever 1/M, < u; < oo.

Proor. The equivalence of (i) and (iii) follows by the Karush-Kuhn-Tucker conditions, with u; being the
reciprocal of the Lagrange multiplier corresponding to e; + «; > 0. (i) implies (ii) by Lemma 6. The proof of
(ii)=>(iii) is the same as in Theorem 2, with y(P) replaced by I'; (P). O

6.2. A-conservative labelings. We define the notion of A-conservative labeling analogously as in §5.3 for
the linear case. Let us define the fatness of ij € E; by s;(ij) :=T};(u;) — T;;(f;;) (if ij is a backward arc, this
is equivalent to s;(ij) = f};). The fatness expresses the maximum possible flow increase in j if we saturate ij.
This notion enables us to identify arcs that can participite in fat paths during the algorithm. In accordance with
the other variables, the relabeled fatness is defined as s} (if) :=s,(ij)/u;.

Consider a scaling parameter A > 0. As in the linear case, the A-fat graph E}‘ (A) is the set of residual arcs
of relabeled fatness at least A:

EF(A) ={ij € E;: s} (ij) = A}.
Arcs in Ef(A) will be called A-fat arcs. As in Shigeno [36], we use the following linearization on A-fat arcs
in “chunks” of A:
o) = =
. Fij_‘l(rij(fij) +Aﬂj) _f;'j’
This is well defined since I};(f;;) + Ap; < I};(u;;) for A-fat arcs. Note that if I;(-) is linear, i.e., I}; (@) = y;a,
then 0} (ij) = v};. An equivalent way of writing (9) is

A

ij € Ef(A). ©)

0x(ij) = —— . [ EEF(D). (10)
D+
Also, if the reverse arc ji is A-fat, then using I';(f;;) = —f; and T';;' = —T};(—a), we get
. Ap,;
0x(ji) = 3 (11)

Fij (fzj) - Fij(fij —Aw;) .
Consider a label function p: V — R_, U {oo}. A node i € V is called A-negative if e < d;A, A-neutral if
e; = d;A, and A-positive if e}’ > d;A. The labeling u is A-conservative, if 0 (ij) < 1 holds for every ij € E (A).
Furthermore, we require w; > 1/M, for all i € V, with equality for every A-negative node i.

Note that a A-conservative labeling cannot have any nodes with u; = oo. Using the convexity of I'"!, it can
be shown that if A’ > A then 6}, (i) < 04 (ij) for every arc ij € Ef(A"). Let Ex*(f) = X,y max{e}’, 0} and
Exi(f) =Yy max{e! —d,;A, 0} denote the total relabeled excess of positive and A-positive nodes, respectively.

The key importance of A-conservativeness is that it is maintained when sending A units of flow on arcs with
6% (ij) = 1. This is formulated in the next simple lemma.
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LEMMA 7. Assume p is A-conservative, and let ij € E} (A) be an arc with 04 (ij) = 1. If we increase f} by
A, then F“ ( fl ) also increases by A, and A- conservatlveness is maintained.

ProoF. The condition 6% (ij) =1 is equivalent to T’ ( +A) = ( ) + A, showing the first part. Let
f = f;; + Ap; be the modified flow. For the second part 0 V(i) <1 for f easily follows from convexity.
Further observe (11) shows that we get 64 (ji) =1 for f This gives A- conservativeness for the modified flow
as all other arcs are left unchanged. [

In contrast to Lemma 2, the following claim only enables to transform a A-conservative labeling a A/2-
conservative one, instead of arbitrary A’ < A. The reason is that besides the set of A’-fat arcs being larger than
the A-fat arcs, we may also have A-fat arcs with 0% (ij) <1 < 6, (ij).

LEmMMA 8. Let f be a pseudoflow with a A-conservative labeling jv. Then there exists a flow f such that u
is A/2-conservative for f and Exy,(f) < Exk(f) +3mA.

Proof. Consider a A/2-fat arc ij with 6 /2(1 j) > 1 for f, that is,

- A A
Ejl(nj(ﬁj) + E/‘Lj) —Jij < E.U«i- (12)
There are two possible scenarios: (a) ij was not A-fat, that is,
A
EM] — lj(ulj) ](f‘z]) < AI‘L]’ (13)
or (b) ij was also a A-fat arc. Then by A-conservativeness,
l-‘ij_'l(rij(fij) +Aw;) — f; = Au,. (14)

In both cases, let us define A
.fij = Fi]_'l (Fij(fij) + 5:“«,‘)-

The A/2-fatness of ij guarantees that this is well defined. In case (a), we claim that ij is not A/2-fat for f.
Indeed,

_ A A
Fij(”ij) - Fij(fij) = Fij(uij) - <Fu(fz,) + 5:“«;) < E:Uvj-

The last inequality follows by the second part of (13). In case (b), we claim that if ij is a A/2-fat arc for f then
0% ,(ij) < 1 must hold for f. Indeed, if we subtract (12) from (14), we get

A A
Fi]_'l(l—‘ij(ﬁj) + A:Uvj) - Fi]_'l (sz(fu) + EM;) > E:Uﬁ’

and by substituting £, it follows that

ij»
A

5 Mi

_ A _
sz_‘l (Fij(fij) + E#j) - fij > 3

that is, 0% ,(ij) <1 for .
We next show that if ji is also a A/2-fat arc for f, then @ A2(ji) <1 holds for f. Indeed, using (11),

N /2( ji) <1 for f is equivalent to
- - A A
Fij(fij)_rij(fij_il“”) 2:“,

A - A A
() + ki~ L (fij - EM) z M

Subtractmg (A/2)p;, rearranging and applying the stnctly monotone increasing function I'; !, we get >
— (A/2);, that follows from (12) by substituting f

We define f the above way whenever ij is a A/2 fat arc with 6,(ij) > 1. (As a simple consequence of

concavity, this cannot be the case for both ij and ji. ) If this does not hold for neither ij nor ji, then let f = fi-
The next claim compares f;; to fu and I'(f;;) to I‘(fl])

Equivalently,



~
o))
S
n ©
‘gm
SE
59
© C
o =
£ =
5
.
e
O =
%‘.{:
oi—'
S
23
N
> >
8—«5
(SIN°2)
(/)] -
=23
£ 0
o2

o
5 a
2
= O
D 'n
T .2
=

)
go.
o2
T ©
T p
wx
<o)
= =
S o
P
£ 0T
(o2 =)
= O
S c
&
0§
gﬁs’
o £
e)
(S
EE
o T
O s
W=
Z35
bl
<

Végh: Concave Generalized Flows and Applications
Mathematics of Operations Research 39(2), pp. 573-596, © 2014 INFORMS 589

Algorithm Symmetric Concave Fat-Path
forieVdou, < 1/M;
for ij e E do f;; < u;;
A<~ MU+ 1;
while (2n+4m)A > ¢ do
do
Tighten-Label(f, u, A);
D« {ieV:e>(d,+1A};
Ny« {ieV: e <dA};
pick s € D, t € N, connected by a tight path P;
send A units of flow along P;
while D # @;
Adjust(A);
A< AJ2;
return e-approximate optimal solution f.

FIGURE 2. The algorithm for symmetric concave generalized flows.
CLAIM 6. |ff; —f{1<A/2 and |I‘l’]‘(f5) —TH(fiHI<A/2.
PROOF. There is nothing to prove if f ij = f;j- Assume f;; was increased as above (decreasing f;; is the same
as increasing f;;). The first part follows by (12). By the definition of f;,
- A A
i (fiy) =5 () =Ty (f) + E,Uvj =)= E,U«j,
giving the second part. [

For A/2-conservativeness, we also need to show that f has no A/2-negative nodes with w, > 1/M,. By the
above claim, the total possible change of relabeled flow on arcs incident to i is d;A/2. A node is nonnegative
for A if e > d,A and for A/2 if e} > d,A/2. Consequently, a A-nonnegative node cannot become A/2-negative.

Finally, Ex/ »(f) < Exi(f)+ Xy d;A/2, and each arc is responsible for creating at most A/2 units of new
excess. This gives Exg/z(f) < Ex\(f)+ (3m/2)A, as required. O

The subroutine Adjust(A) performs the simple modifications described in the proof (in contrast to the linear
case, this subroutine has only one parameter).

6.3. A-canonical labelings. Given a pseudoflow f and a A-conservative labeling u, the arc ij € E}JL (A) is
called fight if 6%(ij) = 1. A directed path in E}L (A) is called tight if it consists of tight arcs. We call u a
A-canonical labeling, if from each node i there exists a tight path to a A-negative or to a A-neutral node. Such
a path is approximately a highest gain A-fat augmenting path. The subroutine Tighten-Label(f, u, A) returns
a A-canonical label u' > u for a A-conservative label u. This is almost identical to the algorithm described
in §5.3. The only difference is in the definition of the multiplier @, which is given by (4) for the linear case.
Instead, we define

1 et
W: ij€EF(A),iceV\S, je S},min{d—’A: ie V\S”.
In an iteration, we multiply every w; by a for i € V\S, where S is the set of nodes from which there exists a tight
path to a A-negative or a A-neutral node. We claim that as in the linear case, this maintains A-conservativeness,
and extends S by at least one node. This is a simple consequence of the fact that multiplying w; by o multiplies
6% (ij) by « for every incident arc ij.

To verify that u remains A-conservative, we also have to check 6% (ij) <1 on all arcs ij € E}L (A), je V\S.
This follows by the convexity of T}

As in the linear case, the set of A-negative and A-neutral nodes will be nonempty after performing Tighten-
Label(f, u, A), with every node v € V connected by a tight path to such a node. (Note that A > 0 is always
assumed in the nonlinear case.)

a::min{min{

i

6.4. The main algorithm. The algorithm is shown on Figure 2. Let us initialize u; = 1/M, for every i € V,
and f;; = u,; for every ij € E. (We set f;; to the upper bounds rather than the lower bounds because I';(0) = —oo
is allowed.) The algorithm consists of A-phases, and A decreases by a factor of 2 between two phases. The initial
value of A is A= MU + 1. The algorithm terminates with an e-approximate solution once (2n +4m)A < e.
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During the A-phase, we maintain a pseudoflow f and a A-conservative labeling . The w; values may only
increase. Let D denote the set of nodes i with e/ > (d;+ 1)A and let N, denote the set of A-negative or A-neutral
nodes. The A-phase consists of iterations, and terminates whenever D becomes empty. In each iteration, we
update u to a canonical labeling by calling Tighten-Label(f, u, A). If D # & still holds, then we send A units
of relabeled flow on a tight path from some s € D to a A-neutral or A-negative node ¢. (Note that N, # & always
holds after performing Tighten-Label(f, u, A), and every node is connected by a tight path to N,.)

6.5. Analysis.
CLam 7. The initial p is A-conservative, and A-conservativeness is maintained during the entire A-phase.

PrOOF. Initially, f = u and hence E; is the set of backward arcs. For an arc ij € E, sk(ji) = u;/p; <
MU < A, and hence E(A) = @. Also, p; = 1/M,; holds for every node i. Tighten-Label(f, u, A) clearly main-
tains A-conservativeness. We use only tight arcs to send flow, and Lemma 7 guarantees that this preserves

A-conservativeness. At the end of the A-phase, Adjust(A) transforms f to a A/2-conservative pseudoflow. O
Cram 8.  The A-phase starts with Exk(f) < (2n+3m)A.

ProoF.  For the initial solution, Exk () < M(X,cy |b;]|+mU) < (m+n)MU < (m+n)A, since A= MU +1.
Once we finish all iterations in the A-phase, D = & implies Ex(f) < nA. By Lemma 8, Adjust(A) transforms
f to a A/2-conservative solution by increasing the excess by at most %mA. Hence the A/2 phase starts with
Exi(f) < (2n+3m)A/2, proving the claim. O

LEMMA 9. A A-phase consists of at most 2n + 3m iterations.

PROOF. As for the linear case, let W(i) = [e/'/A]| — d, if €/ > (d; + 1)A and ¥ (i) =0 otherwise. Consider
the potential function ¥ =3, , ¥ (i). By Claim 8, ¥ < 2n+ 3m holds at the beginning. In the relabeling steps,
¥ may only decrease, and in every path augmentation, it decreases by exactly 1. [

Recall that k, = }",.y Mik; = 3 ,cy M;min{—e;, 0} denotes the excess discrepancy. For a A-conservative u,
M;k; = —e! holds for every node i with ¢; < 0, because of wu; = 1/M;. Consequently, Ky is the total rela-
beled deficiency of the negative nodes. The next theorem shows that if A < g/(2n + 4m), then we have an
g-approximate solution at the end of the A-phase.

THEOREM 5. At the end of phase A, the actual f is (2n+ 4m)A-optimal.

PrOOF. Let us keep running the algorithm forever unless it finds a O-discrepancy solution at some phase.
First, consider the case when for some A’ = A/2*, we terminate with a O-discrepancy solution. In all phases
between A and A, the total decrease of the excess discrepancy k, = Y",.y Mik; = =Y ,cy. , o i during the
path augmentations is bounded by (2n +3m)(A/2+ A/4+---+ A/2¥) < (2n+ 3m)A. Further, the subroutine
Adjust can decrease the excess discrepancy by m(A/2 + A/4 + --- 4+ A/2F) < mA. Since in the A’-phase we
have a O-discrepancy solution, the total discrepancy at the end of the A-phase is at most (2n 4+ 4m)A, proving
the theorem.

Assume now the procedure runs forever. For each i € V, k; is decreasing and thus converges to some limit .
Let k* =),y M;k:. As above, the total decrease of the excess discrepancy after phase A is bounded by
(2n+4m)A, hence k; < k* + (2n+4m)A. The proof finishes by constructing an optimal pseudoflow f* with
discrepancy k*.

Let £ denote the pseudoflow at time ¢, for A® = A,/2’, with labels ,udl@. For each node i, ,udl@ is increas-
ing; let wf =1im,_, ,ul@. For every ij € E, fi;r) is a bounded sequence (0 < fiy) < u;;). Consequently, we can
choose an infinite sequence 7° C N so that restricted to ¢ € 77, all sequences fiy) converge; let f; denote the
limit. We shall prove that f* is an optimal pseudoflow with optimal labeling u}, completing the proof.

Let V,, = {i: uj = oc}. We claim that V\V_ # @. Indeed, if i is A-negative in a certain phase, then w; = 1/M;,
and once i becomes A-positive or neutral, it would never again become A-negative. Consequently, the set of
A-negative nodes is decreasing. Once it becomes empty, we arrive at a O-discrepancy solution. If it never becomes
empty, then we have a set N* that remains the set of A-negative nodes after a finite number of steps and thus
wi=1/M; for i € N*.

Let e} denote the excess of f*. If ef <0, then clearly i € N* and w} =1/M,. If e} > 0, we shall prove u; = oo.
For a contradiction, assume u} < oc. Then for sufficiently large € T’, (d; +2n + 3m)A(’)pf) < eft) and thus
Exk, (f) > 2n+3m)A", a contradiction.
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We have to prove Fij*+(]‘i;'f”*) <1 whenever ij € E;.. If u} = oo, then Fi’;*+(f;”*) =0. If u} < oo, then the
definition (9) gives

A ,U«E-t) Ml(-t)

L (0 () + A0 = £ )

Then A(’)p,y) — 0 and hence the first fraction converges to I (f) = 1/{I';;'}* (I (f;;)), and the second to
w;/w;, leading to the conclusion using Claim 5. U

o ..
1 z OZ(x) (l.]) =

THEOREM 6. The above algorithm finds an e-approximate solution to the symmetric concave generalized
Sflow problem in time O(m(mo + nlogn)log(MUm/¢)), where o is the time needed for a value oracle call.

Proor. The initial value of A is MU + 1, and we terminate if A < &/(2n + 4m). Hence the total number
of scaling phases is O(log(MUm/€)). The number of iterations in a phase is O(m) by Lemma 9. For the
subroutine Tighten-Label, we first query the I';;(f;;) and I"ij‘.l(l“ij( fij) +Aw;) values for every ij € E;f (A). This
enables computing the 6%(ij) values. The subroutine can be implemented as a slightly modified version of
Dijkstra’s algorithm time using Fibonacci heaps as in Fredman and Tarjan [11]. For every ij € S, we have to
query T} (T;(f;) + Ap;) once more, when j enters the set S, or at the termination of the algorithm, in order
to identify the final set of arcs in E;(A). The total running time of Tighten-Label is hence O(mo + nlogn)
this dominates the running time of an iteration. Adjust(A) can be performed by querying the values I';(f;;) and
FiJTI(I‘ij(f}j) +(A/2)p;) values for every ij € Ej’f(A/Z) and modifying every f;; value by £(A/2)u; if necessary.
Hence Adjust(A) runs in time O(mo). The overall running time bound then follows. O

7. Sink versions of the problems. In this section, we show how the algorithms in §§5 and 6 can be applied
to solve the sink versions of the corresponding problems. For linear generalized flows, let us set M, =1 and
M;=B"+1 forevery i€V —r. Letus set b, =Y jicp ¥jiltj — 2. yjer Lj] +1 < d,B*>+ 1 and keep the same
b; for i # t. For an arbitrary pseudoflow, b, is a strict upper bound on 3_; ;,cr ¥, fjs — > j..jer fij» hence e, <0
must hold.

Let us run the algorithm for the symmetric formulation with these M,’s and b,’s, returning an optimal pseud-
oflow f and optimal labels w. We claim that f is also optimal for the sink formulation. If ¢; > 0 for all i #1¢,
this is clearly the case as f is feasible for the sink formulation and w satisfies the dual optimality conditions
(see §4.2). On the other hand, we prove the following.

LEMMA 10. If there exists any node i € V —t with e; <0, then the sink version is infeasible.

PrOOF. Let S, be the set of nodes i € V — ¢ with ¢; <0, and let S be the set of nodes j € V for which there
exists a path in E, from j to a node in S, (S, €S C V). We first show that ¢ ¢ S. Indeed, if P were a t—i path
in E; with i € S, then 1 > y*(P) = y(P)u,/u;. Since both i and ¢ are negative nodes, u;, = 1/M; =1/(B" +1)
and u, = 1. Consequently, y(P) < 1/(B"+1). This is a contradiction since y(P) is the product of at most n — 1
rational numbers, each with denominator at most B. Further, S may contain no nodes j with e¢; > 0 by Lemma 1.

For a contradiction, assume g is a feasible solution to the sink version; choose g such that 3 ;. |f; — gl
is minimal. Let ¢;(g) denote the ¢; value for g. By feasibility, ¢;(g) > 0> e; for every j € S. By the definition
of S, g; <u; = f; for every ij € E entering S and g; > [;; = f;; for every ij € E leaving S. Since S, # @ and
e;(g) > e; for every i € S, it is easy to see that there exists a directed cycle C C E, of arcs inside S with f}; < g;;
for every ij € C. We have 'y{; <1 for all ij € E, and therefore y(C) < 1. Consequently, we can decrease the
g;; values around C by a small amount without decreasing the e, (i) values for any node i € V, and thereby we
obtain another feasible solution. But this contradicts the extreme choice of g. [

By setting the b, value and the M,’s, B has increased to d,B>+ 1 and M = B" + 1. This gives running time
O(m?*(m+ nlogn)logB).

Let us turn to concave generalized flows. An g-approximate solution to the sink version means a pseudoflow
S with Y",.,_, max{0, —e;} < € and e, being at least the optimum value minus &.

Let us set b, = U* + 1, and keep the same b, for i # t. Now b, is a strict upper bound on ;. ;.. I, (fj;) —
> jujer fiy (recall the definition of U* in §2.1). Thus e, < 0 is guaranteed for every pseudoflow. Let us set
M, =[QU*+1)/e]+1if i€V —r and M, = 1. Let us run the algorithm with these M; and b, values for the
symmetric formulation to obtain an e-optimal solution f.

If Ky > 2U* + 1 + g, then we claim that no feasible solution exists for the sink version. Indeed, by the
definition of U*, if there is a feasible solution f’, then there exists one with ¢, > —U*. If f’ is such a feasible
solution for the sink formulation, then its excess discrepancy for the symmetric formulation is at most k, <
b,+U* <2U* + 1, a contradiction as f was eg-optimal for the symmetric formulation.
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If k < 2U* + 1+ ¢, then we claim that f is g-optimal for the sink version. Indeed,

1 Z Mk < s <eg
[QU*+1)/e]+1, T IQUAH)/E]+H1 T

eV—t

> max{0, —e;} =

ieV—t

It is left to show that e, cannot be further than & from the optimum value in the sink formulation. Indeed, let f”
be the optimal solution to the sink formulation with objective value e;. Note that f’ is also a feasible solution
to the symmetric formulation with k;, = b, — e;. The claim follows by

b—e,te=kp+e>k, 2K =b —e,

and thus e, > e, — ¢. In the first inequality, we use that f is g-optimal for the sink formulation. This gives a
running time bound O(m(m + nlogn)log(U*m/¢)).

8. Finding the optimal solution for rational convex programs. In this section, we first give a general
theorem that shows how an approximate solution to the sink version can be converted to an exact optimal
solution, given that one exists. We shall verify the required technical properties with appropriate parameters
for nonsymmetric Arrow-Debreu Nash bargaining. Unlike the linear Fisher model, ADNB might be infeasible.
However, it can be shown that if the problem is infeasible, then for appropriate (polynomially small) &, the
g-approximate version is also infeasible. Similar reductions should hold for all other rational convex programs
discussed in §3 as well, giving polynomial time algorithms for finding optimal solutions.

THEOREM 7. Let problem % be given by the sink formulation with n nodes and m arcs, and complexity
parameters U, U*. Assume P is guaranteed to have a rational optimal solution, and the following conditions
hold for some values e, T and a function 7(n, m, U*).

(P1) Consider the algorithm for the sink version for an g-approximation. Then either there exists no feasible
solution, or w; <T holds for any i € V, even if running the algorithm for an arbitrary number of phases.

(P2) A subroutine is provided for finding an optimal solution f in T(n, m, U*) time, if the following assump-
tions hold. Assume that for each ij € E, we are given an interval I;; C [1;;, u;;] with |I;;| < 2Te, with the guarantee
that there exists an optimal solution f* with f7 € I; for all ij € E.

Then there exists an algorithm for finding the exact optimal solution or proving that the problem is infeasible
in O(m(m+ nlogn)log(U*m/¢e)) + (n, m, U*) time.

We remark that in (P2), f = f* is not required.

ProOOF. Let us formulate the symmetric version for g-approximation as in §7. Assume we run the algorithm
for this problem forever, as in the proof of Theorem 5. The w;’s shall converge to some finite values u; <7 as
otherwise infeasibility is implied by (P1). In any A-phase, the total change of £ is bounded by &' = (2n+3m)A,
and thus f;; may change by at most T¢'. Therefore all f;;’s converge to some values f7, which can be seen to
give an optimal solution, as in the proof of Theorem 5.

The algorithm terminates whenever A < &/(2n + 3m) or if u, > T for any i € V—in the latter case we
may conclude infeasibility. Assume now u; < T for every i € V at termination. At this point, the intervals
I =[f; — Te, f;; + Te] satisfy the conditions in (P2), since |f; — f;;| < Te. Running the &-approximation
algorithm and then the subroutine described in (P2) gives the running time bound. [

To ensure property (P2), a useful method is to enforce the existence of a unique optimal solution by perturbing
the input data, as done by Orlin [31] for linear Fisher markets. If there is a unique rational optimal solution f*
with all entries having denominator at most Q, then setting 27¢ < 1/Q enables us to identify the set of arcs
with fi7 > 0. This can be already enough to compute f* efficiently.

8.1. Application to nonsymmetric Arrow-Debreu Nash bargaining. Let us now apply Theorem 7 for
the nonsymmetric ADNB problem. Let us assume all utilities U;;, budgets m;, and disagreement utilities c; are
nonnegative integers, with U,,, = max{U;: i € B, j € G}, R = max{m;: i € B}, and C = max{c;: i € B}. Let
n=|G|+ |B| and let m be the number of pairs ij with U; > 0. Let us assume that there exists at least one arc
with positive utility incident to any buyer and to any good. The special case ¢ =0 is identical to Fisher’s market
with linear utilities.

Consider a candidate solution with price p; for each good j € G. Let x;; > 0 denote the amount of good j
purchased by buyer i. It follows from the KKT-conditions (see also Vazirani [42]) that (p, x) is an optimal
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solution if and only if (i) > ;.5 x; = 1 for each good j, that is, each good is fully sold; and (ii) for any buyer i
and good j, U;/p; < (¥ jeq U;x;; — ¢;)/m;, and equality holds whenever x; > 0.

As shown in Vazirani [42] and discussed in the introduction, the market equilibria coincide with the optimal
solutions to the convex program, a modification of (EG):

max »_m;log(z; —c;)
ieB
z; < Z Uijxij VieB
jeG
Yx, <1 VjeG
ieB

x>0

z;>c¢; VYieB.

Unlike (EG), this problem might not have a feasible solution. By strict concavity of the objective, the utilities
>_jec Ujjx;; accrued by the players are the same in any optimal solution whenever the problem is feasible. Yet
these same values can be obtained by different allocations. As in Orlin [31], we assume that there exists a
unique optimal allocation as well. This can be done by a lexicographic perturbation of the U;; values, without
significantly increasing the running time. This guarantees that the set of arcs with x;; > 0 in an optimal solution
is cycle free.

After the transformation described at the beginning of §6.1, we obtain the following concave generalized flow
instance on n + 1 nodes and m + |B| arcs. The graph (V, E) is defined on the node set V=B U G U {¢}. Let
ji€ E whenever j€ G, i€B, U;>0, and set I';;,(a) = U;a and u;; =2. Add an arc it € E for every i € B with
[,(¢) =m;loga and u;, =23 ;. U;. Let b; = —1 for j € G, and b; = ¢, for i € B. The arc capacities are set
in a way that the capacity constraints would never become tight. The complexity parameter U is bounded by
2|G|U,,.- We shall prove the following.

THEOREM 8. Let K = nRU,,,. Setting T = U* = max{C,nKlogK}, ¢ =1/(2K"U*) satisfies the require-
ments on U* in §2.1 and (P1) and (P2) in Theorem 7. Our algorithm delivers an optimal solution in running
time O(m(m + nlogn)(nlog(nRU,,,) +log C)) for nonsymmetric ADNB.

The running time 7(n, m, U*) will be negligible compared to the main algorithm and therefore it does not
affect the complexity bound. Also note that our general algorithm assumes exact arithmetics and exact values
returned by the oracles. Applying it directly would assume that we are able to compute the exact values of
logarithmic functions. However, with some further technical work the algorithm can be transformed to a truly
polynomial one, using only rational numbers of size polynomially bounded in the input size. In the rest of the
section, we shall verify the choices of the parameters in the theorem.

LEMMA 11 (SEE VAZIRANI [42, THM 2], ORLIN [31, LEMMA 2.1]). Assuming that the problem is feasible
and there exists a unique optimal allocation x*, all positive xj; values are rational numbers with a common
denominator S < K".

PrOOF. The optimal allocations x* and prices p* can be uniquely obtained given the set F of arcs ji with
x;; > 0. If we introduce the variable ¢; = 1/p;, then an optimal solution must satisfy the following system of
linear equations:

> x;=1 ViegG,
jijieE
> Unxy — Ujmiq;=c; VjieF.

k:kieF

(15)

We claim that this system has a unique solution (x*, 1/p*). For every good j, U;/p; = (X i ricr UnXi — ¢;)/m;
for every ji € F; let us denote this common best bang-per-buck value by b,. Let us set the price of an arbitrary
good jy as p; = a in an (undirected) connected component of F. Using that U;/p; is the same on any two
arcs in F incident to any i € B, it follows that the value of « uniquely determines every p; value in the same
component, and p; will be proportional to a. Consequently, all b; values for i € B in the same component
are proportional to 1/a. The optimality conditions imply that in an equilibrium, the money spent by buyer i
is r; =m; 4 ¢;/b;, a linear function in a. In each component of F, the sum of prices should be equal to the
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money spent by the buyers. This gives a linear equation on « hence uniquely determines all prices and bang-
per-buck values in the component. The x;; values in the component have to sum up to 1 for each good i and
D kkier UnXy = b;m; 4 ¢;. As F is a forest, this system has a unique solution.

In the solution to (15), a common denominator is the determinant S of a largest nonsingular submatrix of the
constraint matrix. The Hadamard bound gives S < (nRU,,,,)" = K", using that |F|<n—1. O

The above proof also gives a simple linear time algorithm for finding the optimal solution, verifying (P2) if
2Te < 1/K", with 7(n, m, U*) being negligible compared to the running time of the approximation algorithm.

Next we justify the choice of U*. The inequality U < U* clearly holds. For an arbitrary pseudoflow f,
e, <Y iccm;logv;, <nRlog(nU) < U*. It is left to show that if the problem is feasible, there exists a feasible
solution with e, > —U*. Since the U; and c; values are integers, whenever ;. ,.p U;x;; — ¢; > 0, it should be
at least 1/K". Consequently, if the sink version of the problem is feasible, the optimal objective value is at least
e, > ..omlog(1/K") > —n*RlogK > —U*.

The next claim verifies (P1) and thus completes the proof of Theorem 8.

LEMMA 12.  Either the problem is not feasible, or w, < U* holds for any k € BU G in arbitrary A-phase.

PrROOF. Recall from §7 that we solve the sink version by reducing it to the symmetric algorithm with M, =1
and M; = [2U*/e] + 1. Since u; is nondecreasing, these values converge to some limits u; € RU {co}. We have
0 < f,; <u; on all arcs ij € E in every phase, and therefore we can choose an infinite subset 7" C N so that all
fii’s converge if we restrict ourselves to iteration numbers in 7”. As in Theorem 5, it can be easily verified that
the limit f* is an optimal solution to the symmetric version with conservative labeling w*.

As in §7, if k > 2U* + 1, then the sink version is not feasible, and otherwise f* is also optimal to the sink
version. In the latter case, f;; > 0 for arbitrary i € B must hold as otherwise e, = —oo in the sink version gives
infeasibility. Recall also that the symmetric version was defined such that e, < 0 holds for every feasible solution
and therefore u; = 1.

Consider now an arbitrary i € B. Both it, ti € E, (it is easy to verify that f;, = v,, is impossible), and therefore
(ui/w)(m;/ f¥) =1 must hold by the conservativeness of u*. This means u} = f/m, <U < U*.

Finally, let j € G. Then for an arbitrary arc ji € E, ji € E Y easily follows, and therefore conservativeness
gives (u/pm;)U; < 1, which implies w5 <U*. O

Finally, we remark that if we apply this algorithm to linear Fisher markets (¢ = 0), the algorithm runs in a
fundamentally different way as Devanur et al. [7] or Orlin [31]. Whereas both these algorithms increase the
prices, our algorithm works the other way around: it starts with the highest possible prices and decreases them.

9. Discussion. We have given the first polynomial time combinatorial algorithms for both the symmetric
and the sink formulation of the concave generalized flow problem. Our algorithm is not strongly polynomial. In
fact, no such algorithm is known even for the linear case: it is a fundamental open question to find a strongly
polynomial algorithm for linear generalized flows. If resolved, a natural question could be to devise a strongly
polynomial algorithm for some class of convex generalized flow problems, analogously to the recent result
(Végh [43]), desirably including the market and Nash bargaining applications.

Linear Fisher market is also captured by Végh [43]. A natural question is if there is any direct connection
between our model and the convex minimum cost flow model studied in Végh [43]. Despite certain similarities,
no reduction is known in any direction. Indeed, no such reduction is known even between the linear special
cases, that is, generalized flows and minimum-cost circulations. In fact, the only known market setting captured
by both is linear Fisher. Perfect price discrimination and ADNB are not known to be reducible to flows with
convex objective. In contrast, spending constraint utilities (Vazirani [41]) are not known to be captured by our
model, although they are captured by the other.

As discussed in §4.4, it seems difficult to extend any generalized flow algorithm having separate cycle can-
celling and flow transportation subroutines. Although this includes the majority of combinatorial algorithms,
there are some exceptions. Goldberg et al. [14] gave two different algorithms: besides Fat-Path, they also pre-
sented another algorithm that uses a minimum-cost circulation algorithm directly as a subroutine. Hence for the
concave setting, it could be possible to develop a similar algorithm using a minimum concave cost circulation
algorithm, for example Hochbaum and Shantikumar [19] or Karzanov and McCormick [25] as a black box.

Another approach that avoids scaling is Wayne [44] for minimum-cost generalized flows and Restrepo and
Williamson [34] for generalized flows: these algorithms can be seen as extensions of the cycle cancelling method,
extending minimum mean cycles to GAP’s in a certain sense. Although it does not seem easy, it might be
possible to develop such an algorithm for concave generalized flows as well.
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In defining an g-approximate solution for the sink version of concave generalized flows, we allow two types
of errors, both for the objective and for feasibility. A natural question is if either of these could be avoided.
Although the value oracle model as we use it, seems to need feasibility error, it might be possible to avoid it
using a stronger oracle model as in Karzanov and McCormick [25]. One might also require a feasible solution as
part of the input, as a starting point to maintain feasibility. (For example if all lower bounds and node demands
are 0 and T’;;(0) =0 on all arcs ij, then f =0 is always feasible).
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