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ABSTRACT

We give a constant-factor approximation algorithm for the asym-
metric traveling salesman problem. Our approximation guarantee
is analyzed with respect to the standard LP relaxation, and thus
our result confirms the conjectured constant integrality gap of that
relaxation.

Our techniques build upon the constant-factor approximation al-
gorithm for the special case of node-weighted metrics. Specifically,
we give a generic reduction to structured instances that resemble,
but are more general than, those arising from node-weighted met-
rics. For those instances, we then solve Local-Connectivity ATSP,
a problem known to be equivalent (in terms of constant-factor
approximation) to the asymmetric traveling salesman problem.
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1 INTRODUCTION

The traveling salesman problem — to find the shortest tour visiting
n given cities — is one of the best-known NP-hard optimization
problems.
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Without any assumptions on the distances, a simple reduction
from the problem of deciding whether a graph is Hamiltonian shows
that it is NP-hard to approximate the shortest tour to within any
factor. Therefore it is common to relax the problem by allowing the
tour to visit cities more than once. This is equivalent to assuming
that the distances satisfy the triangle inequality: the distance from
city i to k is no larger than the distance from i to j plus the distance
from j to k. All results mentioned and proved in this paper refer to
this setting.

If we also assume the distances to be symmetric, then Christofides
classic algorithm from 1976 [6] is guaranteed to find a tour of
length at most 3/2 times the optimum. Improving this approxi-
mation guarantee is a notorious open question in approximation
algorithms. There has been a flurry of recent progress in the spe-
cial case when distances are given as unweighted shortest path
metrics [12, 16, 17, 19]. However, even though the standard linear
programming (LP) relaxation is conjectured to approximate the
optimum within a factor of 4/3, it remains an elusive problem to
improve upon Christofides’ algorithm.

If we do not restrict ourselves to symmetric distances, we obtain
the more general asymmetric traveling salesman problem (ATSP).
Compared to the symmetric setting, the gap in our understanding
is much larger, and the current algorithmic techniques have failed
to give any constant approximation guarantee. This is intriguing
especially since the standard LP relaxation, also known as the Held-
Karp lower bound, is conjectured to approximate the optimum to
within a small constant. In fact, it is only known that its integrality
gap’ is at least 2 [5].

The first approximation algorithm for ATSP was given by Frieze,
Galbiati and Maffioli [10], achieving an approximation guaran-
tee of log,(n). Their elegant “repeated cycle cover” approach was
refined in several papers [4, 8, 13], but there was no asymptotic
improvement in the approximation guarantee until the more re-
cent O(log n /loglog n)-approximation algorithm by Asadpour et
al. [3]. They introduced a new and influential approach to ATSP
based on a connection to the graph-theoretic concept of thin span-
ning trees. This has further led to improved algorithms for special
cases of ATSP, such as graphs of bounded genus [11]. Moreover,
Anari and Oveis Gharan recently exploited this connection to sig-
nificantly improve the best known upper bound on the integrality
gap of the standard LP relaxation to O(poly log log n) [2]. This im-
plies an efficient algorithm for estimating the optimal value of a
tour within a factor O(poly loglog n) but, as their arguments are
non-constructive, no approximation algorithm for finding a tour of
matching guarantee.

>

!Recall that the integrality gap is defined as the maximum ratio between the optimum
values of the exact (integer) formulation and of its relaxation.
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Around the same time, an alternative approach was introduced
by Svensson [20]. It reduces the task of approximating ATSP to
a seemingly easier problem called Local-Connectivity ATSP. The
paper [20] also gave an algorithm for Local-Connectivity ATSP
restricted to the special case of node-weighted metrics, implying a
constant-factor approximation algorithm for that special case. We
have generalized this to graphs with at most two different edge
weights in subsequent work [21]. In this paper, we build upon and
generalize both of these results to give a constant-factor approxi-
mation algorithm for all metrics.

THEOREM 1.1. There is a polynomial-time algorithm for ATSP that
returns a tour of value at most a constant times the Held-Karp lower
bound.

The constant of the approximation guarantee that we obtain is
5500 (see the full version). We remark that we have not optimized
this constant, instead favoring simplicity. However, we believe that
further developments are needed to get close to the lower bound of
2 on the integrality gap [5] and the inapproximability of 75/74 [14].

We also note that Theorem 1.1 implies a constant-factor approx-
imation algorithm for the Asymmetric Traveling Salesman Path
Problem via the reduction of Feige and Singh [8].

Outline. The paper [20] introduced the Local-Connectivity ATSP
problem and showed that it is equivalent (in terms of constant-factor
approximation) to the asymmetric traveling salesman problem. Fur-
ther, it gave an efficient solution to Local-Connectivity ATSP for
node-weighted graphs. In [21] we gave a solution for graphs with
two different edge weights. This, however, turned out to be techni-
cally challenging. In fact, it is unclear if the same approach can be
extended even to a fixed number of different edge weights.

In the current paper we take a different route. Instead of trying
to directly tackle Local-Connectivity ATSP in arbitrary weighted
graphs, the first part of our argument uses a sequence of natural
reductions to reduce the problem of approximating ATSP in general
to that of approximating ATSP on special, structured instances
called vertebrate pairs. These instances enjoy properties that make
them amenable for Local-Connectivity ATSP. The reduction of the
first part proceeds in multiple stages:

e We first solve the standard Held-Karp LP relaxation for ATSP.
By applying the uncrossing technique on the optimal dual
solution, we are able to show that we can focus on laminarly-
weighted ATSP instances — ones where the edge weights are
defined by a laminar family of vertex subsets. We discuss
this in Section 2.

o In the next step, we define a natural recursive algorithm that
solves smaller instances obtained by contracting tight vertex
sets in the laminar family. The analysis of this approach
shows that it works as long as the contraction of a set causes
a large decrease in the LP value. We refer to such sets as
reducible. Thus, we reduce the problem further to irreducible
instances: ones that do not contain any such reducible set.
This is outlined in Section 3.

e Given an irreducible instance, we can utilize its structure
together with the constant-factor approximation algorithm
for node-weighted instances [20] to obtain a special subtour
that we call the backbone. Intuitively, the backbone visits
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most of the vertices in the instance. In particular, it is required
to visit at least one vertex in each non-singleton set in the
laminar family. We call an instance together with a backbone
a vertebrate pair. In Section 4 we outline the reduction that
shows that if we can deal with vertebrate pairs, then we can
deal with irreducible instances.

In each of the above stages, we prove a theorem of the form: if
there is a constant-factor approximation for ATSP on more struc-
tured instances, then there is a constant-factor approximation for
ATSP on less structured instances. For instance, an algorithm for
irreducible instances implies an algorithm for laminarly-weighted
instances. One can also think of making a stronger and stronger
assumption on the instance without loss of generality, making it
increasingly resemble a node-weighted metric. The second part, i.e.,
solving Local-Connectivity ATSP on vertebrate pairs, is described
in Section 5.

2 HELD-KARP RELAXATION AND
REDUCTION TO LAMINARLY-WEIGHTED
ATSP

It will be convenient to define ATSP in terms of its graphic formu-
lation:

Definition 2.1. The input for ATSP is a pair (G, w), where G =
(V,E) is a strongly connected directed graph (digraph) and w is a
nonnegative weight function defined on the edges. The objective is
to find a closed walk of minimum weight that visits every vertex at
least once.

Without loss of generality one could assume that G is a complete
digraph. However, for our reductions, it will be important that G
may not be complete.

A closed walk that visits every vertex at least once is equivalent
to an Eulerian set” of edges that connects the graph. This brings us
to the well-known Held-Karp relaxation LP(G, w) shown on the left
of Figure 1. It has a variable x(e) > 0 for every edge e € E, and the
intended solution is that x(e) should equal the number of times e is
used in the tour. Here, 6% (S) denotes the outgoing edges of a vertex
set S, §7(S) denotes the incoming edges, and §(S) is the union of
both. For a function f : A — R, and a subset B C A, we use the
notation f(B) = Y ,ep f(a). In particular, x(F) = Y, cf x(e) for an
edge set F. The optimum value of this LP is called the Held-Karp
lower bound. The first set of constraints says that the in-degree
should equal the out-degree for each vertex, i.e., the solution should
be Eulerian. The second set of constraints forbids the existence
of subtours, i.e., Eulerian components that are connected but do
not connect the entire graph. They are called subtour elimination
constraints.

The dual linear program DUAL(G, w), shown on the right of Fig-
ure 1, is obtained by associating variables (aty, ), ev and (ys)gzscv
with the first and second set of constraints of LP(G, w), respectively.

Now consider primal optimal and dual optimal solutions x and
(a,y), respectively. By a standard uncrossing argument (see e.g. [7]
for an early application of this technique to the Held-Karp relaxation
of the symmetric traveling salesman problem), we may assume that

2By an edge set, we always mean an edge multiset: the same edge can be present in
multiple copies.
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LP(G, w)
min Z w(e)x(e)
ecE
st. x(87(v) = x(6”(v)) forveV,
x(8(S)) > 2 for0 #ScCV,
x2>0.

max

DUAL(G, w)

Z 2-ys

0£Scv
ys + ay — ay < w(u,v) for (u,v) € E,
S:(u,v)€d(S)
y = 0.

Figure 1: The Held-Karp relaxation LP(G, w) and its dual DUAL(G, w).

Figure 2: An example of a laminarly-weighted ATSP in-
stance 7. The sets of the laminar family are shown in gray,
with their y-values written on their borders. We depict a
single edge e that crosses four sets in the laminar family
and has we) = 1+3+2+5 11. Also, if we let S be
the dashed set, then value(S) = 2- (1 +2 +5) = 16 and
value(Z7)=2-(1+1+2+2+3+5)=28.

the support £ = {S : ys > 0} of y is a laminar family of vertex sets,
i.e., any two sets in L are either disjoint or one is a subset of the
other. We may further assume that every edge e € E has x(e) > 0
(since we can always solve the smaller instance where we disregard
all edges e with x(e) = 0). Hence, complementarity slackness gives
the following:

e For every (u,v) € E, we have w(u,v) = Yser: ees(s)Ys +

ay — ay.

e For every S € L, we have x(5(S)) = 2.
We refer to a vertex set S C V with x(5(S)) = 2 (and thus x(5%(S)) =
x(67(S)) = 1) as a tight set (with respect to x). Notice that the first
condition says that the weights of the edges are determined by the
dual solution (a, y). Now consider the weight function w” induced
by the dual solution where we disregard the a-variables: w’(u, v) =
YseL: ees(s) Ys- Akey observation is that w’ is equivalent to w, in
the sense that it assigns the same weight to any Eulerian solution.
We can therefore consider the weight function w’(u, v) = w(u, v) —
ay + ay that is determined by the vector (ys)se £. This motivates
the following definition (see also Figure 2 for an example):

Definition 2.2. A tuple I = (G, L,x,y) is called a laminarly-
weighted ATSP instance if G is a strongly connected digraph, £
is a laminar family of vertex subsets, x is a feasible solution to
the LP(G,0), and y : £ — R,. We further require that x, > 0
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for every e € E and that every set in £ be tight with respect
to x. We define the induced weight function wy : E — Ry as

wr(e) = Xser: ecs(s)Ys forevery e € E.

It is worth noting that whenever both (u, v) and (v, u) are present
in E, then wz(u,v) = wr(v,u). Based on the above ideas, we can
prove the following theorem.

THEOREM 2.3. Assume we have a polynomial-time algorithm that
provides an a-approximation with respect to the Held-Karp relaxation
for laminarly-weighted ATSP instances. Then there is a polynomial-
time a-approximation algorithm with respect to the Held-Karp relax-
ation for the general ATSP problem.

We remark that the concept of laminarly-weighted instances
generalizes the special case of node-weighted instances. Indeed, node-
weighted instances are those laminarly-weighted instances 7 where
the laminar family £ consists only of singletons. Thus for any edge
(u,v) € E we have wr(u,v) = y(y} + Y{o) (the numbers y, for
v € V are called node weights). For that special case, [20] gave a
(27 + €)-approximation algorithm for any € > 0.

For future reference, we refer to the Held-Karp lower bound
as the value of the instance 7 and we define it as a function of
the dual: value() := 2 Y,s¢ r ys. For a given subset S C V of the
vertices, it will also be convenient to localize the contribution of
the dual variables contained strictly inside S: we let value(S) =
2- Y Rer:Rcs Ys- See Figure 2 for examples of these definitions.

3 REDUCTION TO IRREDUCIBLE INSTANCES

By the previous section, we may assume that we are given a laminarly-
weighted instance 7 = (G, £, x,y) as input. Now an important
observation for our approach is the following: since each set S € £
is tight, we can obtain a smaller instance 7 /S = (G’, £/, x’,y’) by
contracting the set S into a new vertex s. We get G’, £’ and x” in
the natural way (see Figure 3 for an example and the full version
for the formal definition). For instance, £’ is obtained from £ by
removing sets R C S and adding the singleton {s}. To complete the
description of 7 /S, it remains to specify how to set the new value
ygs}, To that end, we define the “distance” functions dg and Dg. For
u,v € S, define ds(u, v) to be the minimum weight of a path from
u to v (inside S) and let

2

ReL: ueRcCS

Ds(u,v) = YR +ds(u,v) + YR -

ReL: veRCS
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A tour of the instance 7 /S
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The lift of the tour to a subtour of I

2 2
(ul ol ) (uout’ vout)

2
(s, V5up)

1
(s, Vo)

Figure 3: An example of the contraction of a tight set S and the lift of a tour. Only y-values of the sets R € L : R C S are
depicted. On the left, only edges that have one endpoint in S are shown. These are exactly the edges that are incident to s in
the contracted instance. In the center, a tour of 7/S is illustrated, and on the right we depict the lift of that tour.

We now set

max  Dgs(u,v)/2,

UEDSin, VESout

yis} =ys+

where Sj,, and Soyt denote those vertices of S that have an incom-
ing edge from outside of S or an outgoing edge to outside of S,
respectively. This completes the description of 7 /S.

One can show that every vertex in Si, is connected to every
vertex in Sout by a directed path inside S, and that Dg(u, v) can be
upper-bounded by the value of S:

LEMMA 3.1. Foreveryu € Sip andv € Soy; there is a path fromu to
v inside S that crosses each laminar set R C S at most 2 — |RN {u, v}|
times. Consequently, Dg(u,v) < value 7(S).

The intuition of the definition of Dg and the setting of yis} is as

follows. After contracting S, all sets of the laminar family are still
present in the contracted instance except for the sets contained in
S. Now, after finding a tour in the contracted instance, we lift it
back to a subtour in the original instance. We obtain this subtour
by, for each visit of the tour to s on some edges (uiin, s), (s, véut),
. ut) by the corresponding edges (i.e., by their
(l)ut’ ( .
weight path inside S from v to u; (depicted by swirly edges in
Figure 3). The change in weight incurred by this operation (for the
i-th visit) is

replacing (uiin, $), (s, v

preimages) (uiin, viin), (u véut) of G together with a minimum-

i i ’
2-ys+ Ds(vin,uout) 2- Ysy-
—_———
the weight of visiting s in 7 /S

the weight incurred “inside” S in 7

Indeed, consider the example depicted in Figure 3. In each visit to s
in the tour of 7 /S, the set {s} is crossed twice, incurring a weight
of 2. yis}. Now, say in the first visit to s, the lift of the tour to
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incurs the following weight instead of 2 - yis}:
YR + ds (0, thgu) + Z

Ys + Z YR+ Ys
™ RefivleRcS T~ ReLl: ul,€RCS —

=5 =2+2-2+4+3 =5

=2 =3+4

1.1
=2-ys+ Ds(vm, Ugyt) -

=32

The selection of yf{s} = ys + maxyes, veS,, Psu,v)/2 is such
as to guarantee that (1) is never positive, which implies the the
following:

LEMMA 3.2. Let T be a tour of the instance I /S. Then the lift F of
T satisfies wr(F) < wrs(T).

The lift F is not guaranteed to be a tour in 7: it visits all the
vertices in V \ S but only a subset of the vertices in S (in the
example in Figure 3, there are two vertices not visited). How-
ever, if we can obtain a “cheap” F, then we can complete it in-
side S using our remaining budget. This idea is formalized in a
recursive framework. By definition of the contraction we have
value(Z /S) = value(Z) — (value 7 (S) — maxyes,, veS,, Ds®,v)) -
Recall from Lemma 3.1 that max,es, ves,, Ds(u,v) < value 7(5),
and therefore the value cannot increase after contraction, i.e., we
have value(J /S) < value(Z). Any slack in this inequality can be
used to pay for completing the lift F into a tour of the original
instance 7. This motivates the following definition.

Definition 3.3. We say that a set S € L is reducible if

max  Ds(u,v) < 3/4value(S).

U E€Sin, VESout

An instance I is called irreducible if no set S € L is reducible.

Note that if we contract a reducible set S, then we are guaran-
teed that the value decreases by at least 1/4 value(S). This decrease
is sufficient to employ our recursive strategy and to reduce the
problem of approximating ATSP to that of approximating ATSP on
irreducible instances:
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Eulerian set of edges F

Figure 4: In the left figure we depict a tight set S € £ with two strongly connected components S; and S;. The induced instance
(middle figure) is obtained by contracting S = V \ S into a vertex § and removing the tight set S from £. The thick edges are
paths and edges of a tour in the induced instance. In Theorem 3.4 we obtain an Eulerian set of edges in the original instance
(right figure) by adding the dashed paths, resulting in a tour of each strongly connected component.

THEOREM 3.4. Let A be a polynomial-time p-approximation algo-
rithm for irreducible instances. Then there is a polynomial-time 8p-
approximation algorithm for general laminarly-weighted instances.

PRrooF skeTcH. Consider a laminarly-weighted instance 7. First,
if there are no reducible sets in 7, then we can just use A to find
a p-approximate tour of 7. Otherwise we proceed recursively as
follows:

(1) Select a minimal (inclusion-wise) set S € L that is reducible.

(2) Recursively find a tour T of 7 /S of weight at most

8pvalue(Z /S) < 8pvalue(Z) — 2p value(S).

(3) Use A to complete the lift of T into a tour of 1.

By Lemma 3.2 we have that the weight of the lift of T is no larger
than that of T and so it is at most 8p value(Z') — 2p value(S). There-
fore, the statement will follow if we can show how to use A to find
a set F of edges with w(F) < 2p value(S) such that F plus the lift of
T form a tour of 7.

We first argue that this is possible under the following simpli-
fying assumption: the restriction of x to the smaller instance 7’
obtained by only considering the vertices in S is a feasible solu-
tion to the Held-Karp relaxation of 7’. With this assumption, 7’
is a laminarly-weighted instance with value(Z’) = value(S). It is
furthermore an irreducible instance, since S was selected to be a
minimal reducible set.> We can thus use A to find a tour F of 7’
with w(F) < pvalue(S). The lift of T plus F form a tour of 7 and
so the statement follows, under this simplifying assumption.

In general, this assumption is not satisfied. Instead, we obtain an
instance 7/ (on which to run A) by the operation of inducing on the
set S. This is similar to contracting the complement V' \ S of S into a
single vertex §, though the resulting laminar family and dual values
are somewhat different. Namely, we let y; = value(S)/2 and we
remove S (as well as all supersets of S) from the new laminar family
(see the left part of Figure 4). The intuitive reason for this setting of
y} is that each visit to § should pay for the most expensive shortest
paths in the strongly connected components of S (see Figure 4).

Notice that the instance 7 has value(Z’) = 2-value(S), of which
value(S) comes from sets R ¢ S and another 2y; = value(S) comes
from the singleton {5}. It is, again, an irreducible instance, since

3More precisely, this is the case if we also assume that the sets Rj, and Royt for R € S
do not change.
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S was selected to be a minimal reductible set. Thus we can use
A to obtain a tour F’ of 7’ (see the middle part of Figure 4) with
w(F’") < 2pvalue(S). What remains is to transform F’ into a set F of
edges of the original instance 7, also of weight w(F) < 2p value(S),
such that the lift of T plus F form a tour of 7.

Assume first that S is strongly connected. We think of F’ as an
ordered cyclic tour, and obtain F as follows. Every time F’ exits S on
an edge (u, 5) and (immediately) returns on an edge (5, v), we replace
these two edges by a shortest path from u to v inside S. To bound
the weight, note that every replacement as above decreases the
weight by wr/(u,5) + w7/ (5,v) = 2y} = value(S), while increasing
it by ds(u, v), which is at most value(S) by a slight generalization
of Lemma 3.1. Thus w(F) < w(F’) < 2p value(S). The Eulerian set
F clearly visits all vertices of S and thus, together with the lift of T,
forms a tour of 7.

Finally, if S is not strongly connected, then we essentially per-
form the above rerouting inside each strongly connected compo-
nent of S (doing so for all boundary edges of a component, not only
those incident to §) and obtain a set F that is a union of tours of
each component. Moreover, we prove (in the full version) that the
components form a path-like structure. It follows that the lift of any
tour T of the contracted instance 7 /S will visit each component
of S, guaranteeing that together with F it forms a tour of 7.

See Figure 4 for an example. Consider the tour F’ of the induced
instance 7’/ (shown in the middle part). The movements of F’ that
concern the component S; are as follows: it leaves S; on edge ey,
enters on edge ey, leaves on edge es, and enters on edge e;. Therefore
we route a shortest path from the tail of e, to the head of e4 and
from the tail of e5 to the head of e; (see the right part of the figure).
Similarly, we route two shortest paths inside S;. In F’, each of the
two visits to § incurred a weight of 36 + 36 = 72. For each visit, this
is enough to pay for routing a shortest path inside S; and a shortest
path inside S,. For example, the weight of the path from the tail of
e to the head of e4 is 3 + 3 + 6 = 12, and from the tail of e3 to the
head of e5 (in Sy) it is 7 + 9 = 16. The worst possible case would
be for these paths to together cross each tight set in S twice, thus
costing value(S) = 2y} = 72. o
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The rerouting inside S when obtaining B The lift of the tour found in the ver-
from a lift of a tour of the instance ob-
tained by contracting maximal sets in L.

tebrate pair (Z’, B), where I’ is ob-
tained by contracting Ry and Rs.
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The final tour obtained by recur-
sive calls on Ry and R».

Figure 5: An illustration of the steps in the proof of Theorem 4.2. Only one maximal set S € £ is shown.

4 REDUCTION TO VERTEBRATE PAIRS

Theorem 3.4 shows that it suffices to find a constant-factor ap-
proximation algorithm for ATSP for any irreducible instance 7.
Recall that this means that for every set S € £ there are two ver-
tices uS.. € Sin, VS 1x € Sout With Ds(us .., vS..) > 3/4value(S).
Informally, the shortest path from uS,.. to v crosses a large
(weighted) fraction of all laminar sets inside S. (Indeed, if we had
Ds(us ., v5..) = value(S), then it would cross all laminar sets
inside S.) Our objective is to use this property, together with the
constant-factor approximation algorithm for node-weighted in-
stances [20], to construct a low-weight subtour B that does not
necessarily visit every vertex, but crosses every non-singleton set

of L.

Definition 4.1. We say that an instance 7 = (G, £, x,y) and a
subtour B form a vertebrate pair if every S € L with |S| > 2 is
crossed by B, i.e., §(S) N B # 0. The set B is referred to as the
backbone of the instance.

Our main result of this section further reduces the problem of
approximating ATSP in general to that of approximating ATSP on
vertebrate pairs.

THEOREM 4.2. Assume that A is a polynomial-time algorithm
that, given a vertebrate pair (I', B), returns a tour of I’ with weight
at most f (value(Z”) + w(B)). Then there is a polynomial-time 64 -
approximation algorithm for irreducible instances.

ProoF skeTcH. Consider an irreducible instance 7. We begin
by contracting all maximal sets in £ to obtain an instance 7’. As
noted in Section 3, we have value(Z’) < value(J). Furthermore,
the new instance is node-weighted, since all laminar sets are now
singletons. Therefore we can use the node-weighted algorithm [20]
to find a tour T of 7/ with wz/(T) < 28 value(Z").

Now we wish to obtain a subtour in 7 from T. Thus we perform
the lift operation, just as in the previous section, to get a subtour
B’. By Lemma 3.2, the lift B’ satisfies w7 (B’) < wz/(T). Thus we
have wr(B’) < wp/(T) < 28value(Z’) < 28value(Z). However,
B’ might not cross every non-singleton set in £, or even a large
weighted fraction of all sets.

We therefore slightly modify B’ to obtain our subtour B, as
follows. For each maximal set S € .L, suppose the first visit to S in
the subtour B’ arrives at a vertex 5 € $ and departs from a vertex
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v5 € S. Then we replace the segment of B’ from uS to v° by (see
also the left part of Figure 5):

S
max>

e apath from uy,,, to v5, inside S as guaranteed by Lemma 3.1,

e a shortest path from uS to u

e and a shortest path from v, to v°.

Recall that, intuitively, a path from uS,,, to v, crosses a large
(weighted) fraction of the sets R € L : R ¢ S. We seek out these
long paths, because taking them in every maximal set S € £ will
allow the subtour B to cross a large fraction of the LP value of the
entire instance. On the other hand, it is a detour we can afford to
make: it can be shown that the weight of each of the paths is at
most value(S), we take only one detour (consisting of three paths)
per set S, and all these sets are disjoint by laminarity. Thus we have
w(B) < w(B’) + 3value(J) < 31value(7).

The formal statement concerning this part of our argument
is summarized in the following claim (see the concept of quasi-
backbone in the full version).

CrLamm 4.3. There is a polynomial-time algorithm that, given an
irreducible instance I, constructs a subtour B such that w(B) <
31value(J) and 2 Y,gc r+ ys < 1/avalue(I), where L* consists of
those sets in L that B does not cross.

It is possible that the subtour B is already a backbone: it might
cross all non-singleton sets in £. But even if it does not, the sets
that it does not cross are now far and between: their total LP value
is at most a 1/4 fraction of the LP value of the instance. This allows
us to use a recursive approach similar to the one used in the proof
of Theorem 3.4:

(1) Let 7’ be the instance obtained from I by contracting all
maximal S € L*. (In Figure 5, Ry and Ry are such maximal
sets.) Then B is a backbone for 7’ and (I’, B) is a vertebrate
pair. Invoke A on this pair to obtain a tour T’ of 7’ with
w(T’) < B(value(Z")+w(B)) < B(value(Z)+31value(Z)) =
32f value(7).

(2) Complete the lift of T’ to a tour by making one recursive
call for each maximal set S € L™.

See the right part of Figure 5 for an example of a tour of 7 created
in this way. By Lemma 3.2, lifting a tour does not increase its weight
and so the weight of the lift of T’ is at most 32 value(J). Hence,
the statement will follow if we can show how to implement Step 2
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in such a way that we complete the lift into a tour by incurring an
additional weight of at most 32 value(7).

As in the previous section, we argue that this is possible under
the following simplifying assumption: for each maximal S € L*,
the restriction of x to the smaller instance Jg obtained by only
considering the vertices in S is a feasible solution to the Held-Karp
relaxation of Zg. Then Jg is a laminarly-weighted instance with
value(Zs) = value(S). It is furthermore an irreducible instance,
since 7 was irreducible.” Hence we can recursively call our al-
gorithm to find a tour Fs of I with w(Fs) < 64f value(S). As
mentioned in Section 3, the simplifying assumption is not true in
general. Like in the proof of Theorem 3.4, we complete the argu-
ment using the operation of inducing on S (consult the full version
for details). Doing so loses another factor of two, and so we get
w(Fs) < 2 - 64fvalue(S) = 128f value(S) in general. Thus the
weight increase in the course of completing the lift into a tour is at

most

S maximal in £*

1288- value(S) < 128f-1/4value(J) = 32f value(J),

as required. The above inequality follows from the construction
of B (see Claim 4.3 above). Indeed, we crucially used the prop-
erty >\se o+ value(S) < 1/4value(Z) to bound the total value of the
subinstances for which we make recursive calls, for which we incur
an approximation factor of 2 - 648. If these comprised, say, at least
half of the total LP value, then the weight incurred by the recursive
calls would be prohibitively large and the argument would fail. O

5 ALGORITHM FOR VERTEBRATE PAIRS

Now we are dealing with a vertebrate pair (Z, B). Results in [20]
imply that it is enough to solve an easier problem called Local-
Connectivity ATSP.

Local-Connectivity ATSP. The Local-Connectivity ATSP problem
consists in finding “local” subtours that are only required to cross
the sets of a given partition V = V; U ... U V}. of vertices instead
of connecting the entire graph (as in standard ATSP). A “good”
solution to Local-Connectivity ATSP has a local requirement: each
subtour should not be much more expensive than the lower bound
on the cost (weight) of visiting the vertices in the subtour.

That lower bound on the cost of visiting vertices is defined in
terms of a lower bound function 1b : V' — R,. Intuitively, 1b(v)
encodes how much we are willing to pay to visit vertex v. The Ib
function needs to be fixed by our algorithm before it is allowed to
access the given partition.

More formally, the input to Local-Connectivity ATSP is an in-
stance 7 together with a partition V. = V; U ... U V. of vertices.
(In the case of vertebrate pairs, we are also given a backbone B to
help us.) A solution F C E must be Eulerian and cross every set
Vi in the partition. For some parameter «, we say that a solution
F C E is a-light with respect to b if for every connected component
G = (V(G), E(G)) of F we have w(E(G)) < aIb(V(G)). We also say
that an algorithm is a-light if for any input partition it returns an
a-light solution.

THEOREM 5.1 ([20]). Suppose there is a polynomial-time algorithm
for Local-Connectivity ATSP that is a-light with respect to a lower
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bound function 1b on I. Then a tour of weight at most 10a 1b(V) can
be found in polynomial time.

To simplify the notation, let yy = yyy,} if {u} € Landlety, =0
otherwise. We define the lower bound function

{(value(f) +w(B)/ [V(B)| ifve V(B),
Ib(v) = .
2yy otherwise.

Clearly Ib(V) < 2value(I) + w(B) < 2(value(Z) + w(B))." We
exhibit an O(1)-light algorithm for Local-Connectivity ATSP with
respect to 1b. Theorem 4.2 via Theorem 5.1 then provides a constant-
factor approximation algorithm for arbitrary irreducible instances,
which in turn implies a constant-factor approximation algorithm
for ATSP by Theorems 3.4 and 2.3.

We showcase our main ideas using the special case when the
input is the singleton partition: V = {v1} U{v2} U...U{ovp}. Then,
the connectivity requirement is to find an Eulerian edge set F which
is adjacent to all vertices — in other words, a cycle cover. For more
general partitions, we need to modify the construction by adding
auxiliary vertices for each partition class. This can be achieved by
extending the approach in [20, Section 4].

For the singleton partition case, we first present the further spe-
cial case when £ also contains only singletons. This setting corre-
sponds to a node-weighted instance. Then we extend the argument
to a general family L.

Node-weighted instances. Suppose that £ contains only single-
tons. Then we have a node-weighted weight function: w(u,v) =
Yu + Yo for each (u,v) € E. Further note that B = 0 is a valid back-
bone. In the sequel we assume that B = 0, and thus Ib(u) = 2y,
for any u € V. We now find a 1-light edge set F for the singleton
partition.

Our approach for this case is similar to the classical algorithm
in [10]. Let us solve the following minimum-weight circulation
problem in G.

min Z w(e)z(e)
ecE
st. z(0T() =206 () =1 forveVy, >0,

2(8*(v)) = 2(67(v)) > 1
z20.

forveVy, =0,

We observe that the Held-Karp solution x provided in the in-
stance I is a feasible solution. Using the integrality of the circu-
lation polytope, there must be an integer solution z € Zf with
wTz < w'x = value(T).

Now, the edge set F defined by including z(e) copies of every edge
e € E satisfies the connectivity requirement. To prove 1-lightness,
consider a connected component G of F. We have

Z Yu + Yo =2 Z Yo = lb(V(é))~

(u,0)€E(G) veV(G)

w(E(G)) = (2

“In the full version we normalize the Ib function so that Ib(V)) < value(I'). This is
done to further emphasize the dependency between the lightness guarantee and the
final approximation guarantee. Here we have preferred to keep the notation as simple
as possible.
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Gand L2 = {51,52,53}

Ola Svensson, Jakub Tarnawski, and Laszlé A. Végh

Figure 6: An example of the construction of Gg, from G, £, and the backbone B. The vertices of the backbone are depicted
in black. On the left, the forward edges are straight, the backward edges are swirly, and the neutral edges are dashed. On the

right, the edges of G, without a preimage in G are dotted.

The second equality holds because every u € V with y;, > 0 has
exactly one incoming and one outgoing edge.

General laminar families via the split graph. Let us now con-
sider the case when L can be arbitrary, but the input for Local-
Connectivity ATSP is still the singleton partition. We will find a
4-light edge set F with respect to Ib, in the form F = BU F’, where
B is the backbone (now non-empty) and F” is another Eulerian edge
set.

We will obtain F’ by solving a minimum-weight circulation
problem on a modification of the graph, called a split graph Gsp.

Let L2 denote the family of non-singleton sets in L. Let us
use an indexing L2 U {V} = {S1,52,...,S¢} such that 2 < [S;| <
[S2] < -+ < |S¢| = |V|. For a vertex v € V let

level(v) = min{i : v € S;}

be the index of the first (smallest) set that contains v. We use these
levels to define a partial order < on the vertices: let v < v’ if
level(v) < level(v’). This partial order is used to classify the edges
as follows. An edge (u,v) € Eisa

o forward edge if v < u,
e backward edge if u < v,

and otherwise it is a neutral edge. Let Ey, Ej, and E, denote the
sets of forward, backward, and neutral edges respectively.

The vertex set of Gsp contains two copies of every original vertex:
V(Gsp) = {0%,v! : v € V}. We can naturally map the split graph to
G by mapping v° and v! to v. The idea behind the split graph and
the three edge types is to obtain the following property.

Fact 5.2. Consider a cycle Csp in Ggp. If the image of Csp in G
(obtained by contracting every pair v°,v! of vertices into a single
vertex v) crosses a non-singleton tight set in L, then it visits a vertex
of the backbone.

Note that any cycle C in G crossing a non-singleton tight set in £
must contain both a forward and a backward edge. For consider the
cyclic sequence of levels of vertices in the cycle: it is not constant,
therefore it must both increase and decrease at some points. Now,
we will guarantee Fact 5.2 by splitting each vertex v into two copies
2% and v! and forcing forward edges to go between the 1-vertices
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and backward edges to go between the 0-vertices. Since our cycle
contains both types, its version in the split graph will visit both 0-
vertices and 1-vertices. Clearly, it will need to also contain an edge
from a 1-vertex to a 0-vertex. But, crucially, in the split graph the
only such edges will be of the form (v!, %) for backbone vertices
v € V(B).

Thus, we can use the split graph to allow only cycles (more
precisely, subtours) in the solution that satisfy Fact 5.2. Let us now
give the formal definition (see Figure 6 for an example):

Definition 5.3. The split graph Ggp is defined as follows. For every
v € V we create two copies v° and v! in V(Gsp). The edge set E(Gsp)
contains the following edges:

e For every v € V \ V(B) we create an edge (v°, v') of weight
0.
e For every v € V(B) we create edges (v, v!) and (v!,2°) of
weight 0.
e For every forward edge (u,v) € E¢ we create an edge (u!, o)
of weight w(u, v).
e For every backward edge (u,v) € E, we create an edge
(@?, v°) of weight w(u, v).
e For every neutral edge (u,v) € Ej, we create edges (u°, v°)
and (u!, v!) of weight w(u, v).
We denote the weight function on the edges of the split graph
by wsp. Vertices v® will be called 0-vertices, and vertices v! will be
called 1-vertices.

Further, we show that x can also be mapped to an Eulerian vector
REGs)
xsp ER, .

LEMMA 5.4. There is a polynomial-time algorithm that finds an

. E(G;
Eulerian vector xsp € R+( )

T .
and WepXsp = W' X.

such that the image of xsp in G is x,

The main ingredient of the proof is the following claim that can
be shown by analyzing the primal and dual optimal solutions of an
auxiliary LP, which “channels” flow entering relevant sets in £ to
vertices in V(B) inside these sets. This construction is inspired by
[21].
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Cra 5.5. In polynomial time, we can find a non-negative vector
f € RE satisfying:
(a) f <x,
(b) (6% () = f(6 (v)) for everyv € V \ V(B),
(c) f(e) = 0 for each backward edge e € Ep,
(d) f(e) = x(e) for each forward edge e € Ey.

Intuitively, f resembles a flow supported on x that saturates all
forward edges, does not use backward edges, and has the backbone
as a sink. Instead of the full proof, let us motivate the existence of
such an f in a simple example scenario where there is only one non-
singleton set S € L. Then we have Ef = §7(S) and Ej, = 6*(S),
i.e., the forward/backward edges are exactly the incoming/outgoing
edges of S. The subtour elimination constraints imply (via the min-
cut max-flow theorem) that x supports a unit flow between any
pair of vertices. Let f be such a flow from any vertex outside S to
a vertex v € S N V(B) (such a v exists by the backbone property).
It is easy to see that f satisfies the conditions of the claim. Indeed,
since S is a tight set, f saturates all incoming (forward) edges. It
also does not leave S, i.e., use any backward edges.

Lemma 5.4 can be easily derived from Claim 5.5. For every
edge (u,v) € E, we let xsp(ul,vl) = f(u,v) and xsp(uo,vo) =
x(u,v)— f(u,v). Further, for each v € V' \ V(B), we set xsp(vo, o) =
f(5%(v)) = £(5(v)) in order to satisfy the Eulerian constraint at
v° and at v'. Finally, for v € V(B), we send | (¥ (v)) — f(5~(v))]
amount of flow on either xsp(vo, v1) or on xsp(vl, 00) for the same
purpose.

Given the split graph Gsp and the split flow xsp, let us now return
to the question of implementing Local-Connectivity ATSP with the
input being the singleton partition.

This can be achieved by solving a similar minimum-weight cir-
culation problem as in the node-weighted case. For every v € V
either v or v! will have at least 1/2 units of in-flow in Xsp; we set
a lower bound 1 on this vertex. Further, if y,, > 0, then we also

set an upper bound of 2. We observe that 2xp is a feasible solu-

. . . . E(Gs
tion to this problem. We find an integer solution z € Z +( )

;;z < ZWSTPxSp =2w'x = 2value(7).

We obtain the edge set F/ by mapping z from the split graph
to the original graph G, and adding z(e) copies of e € E. Hence
w(F’) < 2value(Z). Also note that for every y, > 0 we have
[~ ()N F'| < 4.

It remains to show that F = BU F’ is a 4-light edge set with
respect to Ib. Consider any connected component G of F. We dis-
tinguish two cases.

First, assume Gis the component containing the backbone B. We
can upper-bound the weight of the component by the total weight
of F: w(E(G)) < w(F) = w(B) + w(F’) < w(B) + 2 value(Z). On the
other hand, we have Ib(V(G)) > Ib(V(B)) = w(B) + value(T). This
shows that w(E(G)) < 21b(V(G)).

Assume now that G is any other component. Thus E(G) C F’
and V(G) N V(B) = 0. Therefore Ib(V(G)) = 2 ZUEV(G)) Yy. We
will now take advantage of Fact 5.2, the key property of the split
graph. It implies that G cannot contain any edge that crosses a
non-singleton set in £. Indeed, if there were any such edge, then

with
W,

V(G) would intersect V(B). Consequently, w(u,v) = yy + y,, for
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every (u,v) € E. Now we can use a similar estimation as in (2) to
obtain w(E(G)) < 41b(V(G)); we use that |6~ (v) N F’| < 4 for every
Yp > 0.

6 CONCLUSION

In this paper we gave the first constant-factor approximation al-
gorithm for ATSP. The result was obtained in two steps. First, we
gave a generic reduction to ATSP instances with a backbone, i.e.,
vertebrate pairs. These instances were then solved using the con-
nection to Local-Connectivity ATSP introduced in [20]. We believe
that, by specializing and optimizing the techniques of [20] to the
setting of this paper, the integrality gap of the LP relaxation can
be upper-bounded by the hundreds. However, achieving an upper
bound on the integrality gap that is close to the current lower bound
of 2, even say an upper bound of 50, seems to require substantial
progress. We raise this as an important open problem.

OPEN QUESTION 1. Is the integrality gap of the standard LP relax-
ation upper-bounded by 2?7

As mentioned in the introduction, Asadpour et al. [3] introduced
a different approach for ATSP based on so-called thin spanning trees.
Our algorithm does not imply a better construction of such trees
and the O(poly log log n)-thin trees of [2] remain the best such (non-
constructive) result. Whether trees of better thinness exist is an
interesting question. Also, as shown in [1], the construction of O(1)-
thin trees would lead to a constant-factor approximation algorithm
for the bottleneck ATSP problem. There, we are given a complete
digraph with edge weights satisfying the triangle inequality, and
we wish to find a Hamiltonian cycle that minimizes the maximum
edge weight. A tight 2-approximation algorithm for bottleneck
symmetric TSP was given already in [9, 15, 18], but no constant-
factor approximation is known for bottleneck ATSP.

OPEN QUESTION 2. Is there a O(1)-approximation algorithm for
bottleneck ATSP?

We believe that this is an interesting open question in itself, and
progress on it may shed light on the existence of O(1)-thin trees.
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