
Geometric Rescaling Algorithms for Submodular Function Minimization∗

Daniel Dadush† László A. Végh‡ Giacomo Zambelli ‡

Abstract
We present a new class of polynomial-time algorithms for
submodular function minimization (SFM), as well as a uni-
fied framework to obtain strongly polynomial SFM algo-
rithms. Our new algorithms are based on simple iterative
methods for the minimum-norm problem, such as the con-
ditional gradient and the Fujishige-Wolfe algorithms. We
exhibit two techniques to turn simple iterative methods into
polynomial-time algorithms.

Firstly, we use the geometric rescaling technique, which
has recently gained attention in linear programming. We
adapt this technique to SFM and obtain a weakly polynomial
bound O((n4 · EO + n5) log(nL)).

Secondly, we exhibit a general combinatorial black-box
approach to turn any strongly polynomial εL-approximate
SFM oracle into an strongly polynomial exact SFM algo-
rithm. This framework can be applied to a wide range of
combinatorial and continuous algorithms, including pseudo-
polynomial ones. In particular, we can obtain strongly poly-
nomial algorithms by a repeated application of the condi-
tional gradient or of the Fujishige-Wolfe algorithm. Com-
bined with the geometric rescaling technique, the black-box
approach provides a O((n5 · EO + n6) log2 n) algorithm.

Finally, we show that one of the techniques we de-

velop in the paper, “sliding”, can also be combined with

the cutting-plane method of Lee, Sidford, and Wong [27],

yielding a simplified variant of their O(n3 log2 n · EO +

n4 logO(1) n) algorithm.1

1 Introduction

Given a finite set V , a function f : 2V → Z is
submodular if

(1.1) f(X)+f(Y) ≥ f(X∩Y)+f(X∪Y) ∀X,Y ⊆ V.

We denote n := |V |. Examples include the graph cut
function, the coverage function, or the entropy function.
Submodularity can be interpreted as a diminishing re-
turns property and is therefore important in economics
and game theory. Submodular optimization is widely
applied in machine learning and computer vision (see
e.g. [1]).

We will assume that the function f is given via an
evaluation oracle: for every set S ⊆ V , we can query
the value f(S) in time EO. We will assume throughout

∗Supported by NWO Veni grant 639.071.510 and by EPSRC

First Grant EP/M02797X/1.
†Centrum Wiskunde & Informatica
‡London School of Economics
1See [9] for a full version of the paper, including all proofs.

that f(∅) = 0; this is without loss of generality. In the
submodular function minimization (SFM) problem, the
objective is to find a minimizer of this function:

(SFM) min
S⊆V

f(S).

The first polynomial-time – indeed, strongly polyno-
mial – algorithm was given by Grötschel, Lovász, and
Schrijver in 1981, using the ellipsoid method [19]. It re-
mained an important goal to find a strongly polynomial
combinatorial algorithm, which was resolved in 2000, in-
dependently by Schrijver [30], and by Iwata, Fleischer,
and Fujishige [23]. The best current running time of a
combinatorial algorithm is O(n5 ·EO+n6) by Orlin [28].
A recent breakthrough result by Lee, Sidford, and Wong
[27] gave an improved variant of the ellipsoid method

with running time O(n3 log2 n · EO + n4 logO(1) n).
However, the above algorithms do not appear to

work well for large scale instances that arise in applica-
tions such as speech recognition or image segmentation.
A line of recent work has focused on exploiting special
structure of submodular functions that arise in these ap-
plications, such as decomposability [14, 13, 26, 32]. But
for general functions, simple iterative algorithms appear
to outperform the provably polynomial algorithms [18].
In particular, the Fujishige-Wolfe minimum-norm point
algorithm [15, 34] appears to be among the best ones in
practice [1, 18], despite the fact that the first pseudo-
polynomial running time bound was given as recently
as 2014, by Chakrabarty et al. [5].

Our contributions This paper presents
polynomial-time algorithms based on simple it-
erative methods such as the conditional gradient
algorithm or the Fujishige-Wolfe algorithm. We exhibit
two different techniques to improve the performance
of these algorithms to polynomially bounded. The
first technique uses geometric rescaling, whereas the
second provides a unified combinatorial framework for
strongly polynomial SFM algorithms. In what follows,
we provide an overview of both techniques.

Geometric rescaling has recently gained attention for
linear programming. We use the “Full Support Image
Algorithm” from [8]; this was also obtained indepen-
dently by Hoberg and Rothvoß [21]. This is a gen-
eral algorithmic technique to turn simple iterative algo-

Copyright © 2018
Copyright for this paper is retained by authors832

D
ow

nl
oa

de
d

08
/1

7/
18

 to
 1

58
.1

43
.7

4.
20

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

rithms to polynomial-time algorithms for LP feasibility,
by adaptively changing the scalar product. The first
such algorithms were given by Betke [3], and by Duna-
gan and Vempala [11]; we refer the reader to [8] for an
overview of the literature. The method is also applica-
ble to conic problems in the oracle model [2, 7, 8, 29].

Geometric rescaling algorithms are inherently for
feasibility problems. The immediate application of [8] to
(SFM) would only provide the optimum value to (SFM)
using binary search2. However, doing so would not pro-
vide us a primal optimal solution (that is, a minimizer
set), nor a dual certificate of optimality (as in Theo-
rem 2.1). We introduce new techniques to obtain both
primal and dual optimal solutions. The sliding tech-
nique is used to obtain a primal optimal solution: we
reduce the optimization problem (SFM) to a dynami-
cally changing feasibility problem. In case of infeasibil-
ity, the geometric rescaling algorithms terminate when
a certain number of iterations is reached, without pro-
viding a Farkas certificate of infeasibility. The pull-back
technique enables to identify a dual optimality certifi-
cate (and more generally, an approximate dual solu-
tion). This technique is also applicable in the general
LP setting.

Our geometric rescaling algorithm finds both primal
and dual optimal solutions, in running time O((n4 ·EO+
n5) log(nL)). Here, the complexity parameter L denotes
the largest norm of a point in the base polytope. This
matches the best weakly polynomial guarantees [22, 24]
prior to [27].

Building on the geometric rescaling technique,
we also obtain a strongly polynomial O((n5 · EO +
n6) log2 n). This is obtained from a unified combina-
torial framework that can turn any strongly polyno-
mial εL-approximate SFM-oracle into an exact strongly
polynomial algorithm. In fact, pseudo-polynomial
poly(n, 1/ε) running time suffices. Hence, somewhat
surprisingly, we can even use the conditional gradient or
the Fujishige-Wolfe algorithm to obtain strongly poly-
nomial running times.

We can also apply this unified framework to the
cutting plane method. Using the cutting plane tech-
nique by Lee, Sidford, and Wong [27], we obtain a
much simpler SFM algorithm than the one described
in their paper, with the same running time bound
O(n3 log2 n · EO + n4 logO(1) n). Interestingly, our vari-
ant based on cutting-planes does not rely on the Lovász

2Indeed, any polynomial-time algorithm for conic feasibility
can be turned into a weakly-polynomial algorithm for (SFM)
using binary search. For example, in a recent note Fujishige [17]
shows how an algorithm of Chubanov [7] can be used in this
framework.

extension, as is the case both for Lee, Sidford, and
Wong, and for Grötschel, Lovász, and Schrijver. Rather,
we apply the cutting plane method to the strict feasi-
bility problem for a suitably defined convex set. This is
made possible by the use of the same sliding technique
developed for our geometric rescaling algorithm.

The general combinatorial framework is based on
maintaining a ring family guaranteed to contain all
minimizer sets, where the size of the family decreases
through the algorithm until a minimizer is found. This
technique was introduced by Iwata, Fleischer, and
Fujishige [23], and used in multiple subsequent papers,
such as Iwata and Orlin [24], and Lee, Sidford, and
Wong [27]. We note that this technique traces back to
strongly polynomial algorithms for minimum-cost flows,
pioneered by Tardos [33]. Our implementation also
adopts a simplified variant of the bucketing technique of
[27] that leads to a factor n improvement in the running
time as compared to the original framework of [23].

An advantage of our unified framework is that, un-
like all previous papers where the combinatorial argu-
ments on the ring-family are intertwined with the details
of some “basic” algorithm – which can be combinato-
rial in nature as in [23] and [24] or continuous as in [27]
– here we use a black-box approach, by explicitly for-
mulating the approximate oracle requirement, and then
showing that the “basic” routine fulfills those require-
ments.

The rest of the paper is structured as follows. Sec-
tion 2 contains problem definitions and the necessary
background, including an overview of the relevant itera-
tive methods. Section 3 presents the weakly polynomial
geometric rescaling algorithm to solve SFM. Section 4
presents the general framework for strongly polynomial
algorithms. In Section 5, we describe the pull-back tech-
nique that enables the implementation of the approxi-
mate oracle using our geometric rescaling method. Fi-
nally, Section 6 shows how the cutting plane methods
can be used in the strongly polynomial framework.

2 Preliminaries

We refer the reader to [31, Sections 44-45] on the
basics of submodular optimization; this contains all
definitions and basic results presented next. The survey
[1] provides an overview of continuous algorithms for
submodular function minimization.

For a vector z ∈ RV , we denote by z(v) the
component of z relative to v, and for a subset S ⊆ V
we use the notation z(S) =

∑
v∈S z(v). For a number

a ∈ R, we let a+ = max{0, a} and a− = min{0, a};
hence, a = a+ + a−. Similarly, given a vector z ∈ RV ,
we denote z+ = (z(v)+)v∈V and z− = (z(v)−)v∈V .

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited833

D
ow

nl
oa

de
d

08
/1

7/
18

 to
 1

58
.1

43
.7

4.
20

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

The base polytope and the greedy algorithm
The submodular base polytope B(f) of a submodular
function f is defined as

B(f) := {x ∈ RV : x(S) ≤ f(S) ∀S ⊆ V, x(V) = f(V)}.

This polytope is non-empty for every submodular func-
tion f . The elements of B(f) are called bases, and the
vertices are the extreme bases. The extreme bases cor-
respond to permutations of the ground set. More pre-
cisely, for any ordering v1, v2, . . . , vn of V , the following
point is a vertex of B(f), and every vertex is of this
form for some ordering:

(2.2)

x(v1) := f({v1}),
x(vi) := f({v1, . . . , vi})− f({v1, . . . , vi−1})

∀i = 2, . . . , n.

Furthermore, given a weight function w : V → R, one
can compute an extreme base minimizing w>x by the
greedy algorithm GreedyMin(f, w) as follows: order
the vertices in V so that w(v1) ≤ w(v2) ≤ . . . ≤ w(vn),
and output x defined by (2.2) as the optimal solution.
The value of the minimum-cost is then given by
(2.3)

min
x∈B(f)

w>x =

n−1∑
i=1

f({v1, . . . , vi})(w(vi)− w(vi+1))

+ f(V)w(vn).

The subroutine GreedyMin(f, w) requires O(n ·
EO + n log n) arithmetic operations. If w has several
entries with the same value, then there are multiple
ways to sort the elements of V in ascending value
of w, each giving rise to a different optimal extreme
base of B(f). The extreme bases corresponding to the
possible tie-breakings are the vertices of the face of B(f)
minimizing w>x.

If v1, . . . , vn is the ordering computed by
GreedyMin(f, w), we define
(2.4)

MinSet(f, w)
def
= argmin{f(S) : S = {v1, . . . , vi}∃i ∈ [n]}.

A min-max characterization of (SFM) was given by
Edmonds:

Theorem 2.1. (Edmonds [12]) For a submodular
function f : 2V → R, we have
(2.5)

max{x−(V) : x ∈ B(f)} = min{f(S) : S ⊆ V }.

We will often use the following simple consequence.
Assume that for some x ∈ B(f), S ⊆ V , and ε > 0,
we have f(S) ≤ x−(V) + ε. Then f(S) ≤ f(T) + ε for
any T ⊆ V .

Complexity parameters There are multiple
complexity parameters relevant for SFM.

Lf
def
= max{‖z‖1 : z ∈ B(f)},

Lf,2
def
= max{‖z‖2 : z ∈ B(f)},

Ff
def
= max{|f(S)| : S ⊆ V }.

That is, Lf and Lf,2 are the maximum 1 and 2-norms
of the (extreme) bases of B(f). Clearly, Lf,2 ≤ Lf ≤√
nLf,2. It is also well-known that Lf = Θ(Ff) (see e.g.

[6, Lemma 5], and also [20, 25]).
Some of our algorithms require the explicit knowl-

edge of a complexity parameter. We can use the fol-
lowing upper-bounds. Let α(v) = max{f({v}), |f(V)−
f(V \ {v})|}. Then, for every z ∈ B(f), |z(v)| ≤ α(v)
(see [16, Section 3.3]). Hence, we can upper bound
Ff ≤ Lf ≤ α(V) and Lf,2 ≤

∑
v∈V α(v)2. On the

other hand, α(v) ≤ Ff for all v ∈ V .
To summarize, log(nZ) is within a constant fac-

tor of the same value for any choice of Z ∈
{Ff , Lf , Lf,2, α(V),

∑
v α(v)2}. Since our running time

bounds will contain such terms, the choice of the specific
complexity parameter does not matter.

The minimum-norm point problem Fujishige
[15] showed a reduction of (SFM) to the following
convex quadratic optimization problem.

Theorem 2.2. (Fujishige [15]) Let z be the unique
optimal solution to

(2.6) min

{
1

2
‖x‖22 : x ∈ B(f)

}
.

Then, the set S∗ = {v ∈ V : z(v) < 0} is a minimizer
of (SFM). Furthermore, |f(S∗)| ≤

√
n‖z‖2.

We remark that the set S∗ in the above claim is in fact
the inclusion-wise minimal minimizer to (SFM) [15].
Note that in case of f(V) = 0, Theorems 2.1 and 2.2
imply that the minimizer of the 2-norm also minimizes
the 1-norm in B(f). An approximate optimal solution
to (2.6) can be converted to an approximate optimal
solution to (2.5), as stated below (see [5, Theorem 5]).

Theorem 2.3. Assume that z ∈ B(f) satisfies that
‖z‖22 ≤ z>x + δ2 for any x ∈ B(f). Let S =
MinSet(f, z). Then, f(S) ≤ z−(V) + 2nδ. Conse-
quently, f(S) ≤ f(T) + 2nδ for any T ⊆ V .

2.1 Iterative methods for SFM Convex optimiza-
tion algorithms can be naturally applied to SFM, either
by solving the quadratic formulation (2.6), or by mini-
mizing the so-called Lovász-extension, which we do not
discuss here. We refer the reader to [1] for an overview
of such algorithms. Here, we briefly outline two impor-
tant algorithms based on (2.6).

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited834

D
ow

nl
oa

de
d

08
/1

7/
18

 to
 1

58
.1

43
.7

4.
20

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

The conditional gradient algorithm The con-
ditional gradient, or Frank-Wolfe algorithm maintains
a point y ∈ B(f), represented as a convex combination

y =
∑k
i=1 λigi of extreme bases. It is initialized with

y = g for an arbitrary extreme base g. Every itera-
tion runs GreedyMin(f, y) to obtain an extreme base
g′. If y>g′ ≥ ‖y‖22, then y is the minimum-norm point
in B(f), and the algorithm terminates. Otherwise, y
is replaced by the minimum-norm point y′ on the line
segment [y, g′]. The standard convergence analysis of
the conditional gradient algorithm, together with The-
orem 2.3 provide the following convergence bound (see
e.g. [1, Sec 10.8]).

Theorem 2.4. For any δ > 0, within O(n/δ2) itera-
tions of the conditional gradient algorithm, we obtain
a y ∈ B(f) such that for S = MinSet(f, y), we have
f(S) ≤ y−(V) + O(δLf,2). The total running time is
O((n2 · EO + n2 log n)/δ2).

The Fujishige-Wolfe algorithm Wolfe [34] gave
a finite algorithm for finding the minimum-norm point
in a polytope given by its vertices; his algorithm can also
be interpreted as an active set method [1]. Fujishige
adapted Wolfe’s algorithm to SFM [15, 18]. We now
give a brief sketch of the algorithm; for a more detailed
description, see [5, 18, 34].

An affinely independent set of points X ∈ Rn is
called a corral if the orthogonal projection of 0 to the
affine hull of X is in the relative interior of the convex
hull of X. In particular, the optimal solution to the
minimum-norm point problem can be obtained by a
corral, comprising vertices of the face of a polytope
containing the minimum-norm point.

Every major cycle of the Fujishige-Wolfe algorithm
starts and ends with a corral formed by extreme bases
in B(f). The algorithm is initialized with an arbitrary
extreme base (note that every singleton set is a corral).
Let X be the corral at the beginning of a major cycle,
and let y be the projection of 0 to the affine hull of X;
this can be obtained by a closed-form formula. Let us
run GreedyMin(f, y) to obtain an extreme base g′.
If y>g′ ≥ ‖y‖22, then the algorithm terminates with
y as the minimum-norm point in B(f). Otherwise,
we consider X ′ = X ∪ {g′}, which is also affinely
independent. We set x̄ = y, and compute y′ as the
projection of 0 to the affine hull of X ′. If y′ is in the
relative interior of conv(X ′), the major cycle terminates
with the new corral X ′. Otherwise, we start a minor
cycle: we replace X ′ by the extreme points of the face
of the conv(X ′) that contains the intersection point
[x̄, y′] ∩ conv(X ′); the new x̄ is defined to be this
intersection point. Minor cycles are repeated until a
corral is obtained. Finite convergence is guaranteed

since ‖x̄‖2 decreases in every major and minor cycle,
and the number of corrals is finite. However, a bound
on the convergence rate was only recently given in [5].

Theorem 2.5. (Chakrabarty et al. [5]) For any
δ > 0, within O(n2/δ2) iterations (major and minor
cycles) of Wolfe’s algorithm, we obtain a y ∈ B(f)
such that for S = MinSet(f, y), we have f(S) ≤
y−(V) + O(δLf,2). The total running time is O((n3 ·
EO + n5)/δ2).

The line-Fujishige-Wolfe algorithm There is
a natural way to speed up the convergence of the
Fujishige-Wolfe algorithm, by combining it with the
conditional gradient step. For the minimum-norm point
algorithm, Betke [3, Algorithm 2.8] proposed such a
variant; the authors are not aware of this algorithm
having been used in the submodular context. The only
change compared to the Fujishige-Wolfe algorithm is
that at the beginning of every major cycle, x̄ is set to
be the minimum-norm point on the line segment [y, g′]
instead of y. This is the same as the optimal line search
in the conditional gradient method. Consequently, in
every major cycle we make at least as much progress as
in the conditional gradient algorithm. It is easy to see
that in the Fujishige-Wolfe algorithm the total number
of iterations is at most twice the total number of major
cycles. The iteration bound in Theorem 2.5 can be
improved to O(n/δ2), and the total running time to
O((n2 · EO + n4)/δ2).

3 Weakly polynomial algorithm via rescaling

The geometric rescaling algorithm The Full
Support Image Algorithm in [8, Section 3.2] is appli-
cable to the following oracle setting. Let Σ ⊆ Rn be
non-empty, full dimensional cone; our aim is to find a
feasible point in the interior. We are given a separa-
tion oracle for int(Σ); that is, for any vector w, the
oracle decides whether w ∈ int(Σ), and if not, it re-
turns a vector z such that z>w ≤ 0 but z>y > 0 for all
y ∈ int(Σ). Then the algorithm finds a point in int(Σ)
in O(n3 log ω̂−1) calls to the separation oracle, where
ω̂ is a condition number which we will define in Sec-
tion 3.3. The parameter ω̂ can be lower bounded by the
width of the cone Σ, defined as the radius of the largest
ball contained in Σ and centered on the surface of the
unit sphere.

Consider now a submodular function f with f(V) =
0. Assume we want to decide whether f(S) ≥ 0 for all
S ⊆ V , that is, if S = ∅ is an optimal solution to (SFM).
This is equivalent to 0 ∈ B(f) (note that f(V) = 0 is
needed for this equivalence). Consider now the cone

Σ = {w ∈ Rn : w>y ≥ 0 ∀y ∈ B(f)}.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited835

D
ow

nl
oa

de
d

08
/1

7/
18

 to
 1

58
.1

43
.7

4.
20

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

This cone has a non-empty interior whenever (2.6)
is different from 0, or equivalently, if 0 /∈ B(f). A sep-
aration oracle for Σ is provided by GreedyMin(f, w).
Consequently, if the algorithm does not terminate in
the required running time bound, we can conclude that
f(S) ≥ 0 for all S ⊆ V . We can use this algorithm in a
binary search framework to solve (SFM). When query-
ing minS⊆V f(S) ≥ −µ for a µ > 0, we shift f(S) by
f(S) + µ for every S (V , S 6= ∅.

The main drawback of this algorithm is that it only
provides the optimum value, but does not give either an
optimal set S, nor a dual certificate as in Theorem 2.1.
Also, the binary search leads to an additional factor
logFf in the running time.

In this section, we describe a variant of this algo-
rithm, which provides a primal optimal solution, and
does not require binary search. This will be achieved
by dynamically shifting or “sliding” the function f
throughout the algorithm, as explained below. How-
ever, the algorithm does not directly return a dual cer-
tificate of optimality. This can be obtained using the
pull-back technique introduced in Section 5; see also
the remark after Theorem 4.1.

We start by describing the sliding framework. Be-
sides the geometric rescaling algorithm described next,
this technique will also be useful for devising simple cut-
ting plane algorithms for SFM in Section 6.

Sliding the function Throughout the algorithm,
we maintain a value µ ∈ Z+, along with a set W , such
that f(W) = −µ. We initialize µ = max{0,−f(V)},
and set W = ∅ or W = V accordingly. Hence −µ
gives an upper bound on minS⊆V f(S). The algorithm
terminates once it concludes that f(W) = minS⊆V f(S)
for the current W . We define the function fµ : 2V → Z
as

(3.7) fµ(S)
def
=

{
0, if S = ∅ or S = V,

f(S) + µ, otherwise.

This operation is known as the µ-enlargement of the
function f (see Fujishige [16, Section 3.1(d)]).The proof
of the following simple lemma can be found in the full
version [9].

Lemma 3.1. For a submodular function f and a value
µ ≥ max{0,−f(V)}, the function fµ is submodular.
If 0 ∈ B(fµ), then −µ ≤ f(S) for every S ⊆ V .
Furthermore, B(fµ) ⊆ B(fµ′) whenever µ ≤ µ′.

The following Lemma will be used to update the
value of µ.

Lemma 3.2. Consider a value µ ≥ max{0,−f(V)},
and let w : V → R be a cost function such

that min{w>x : x ∈ B(fµ)} > 0. For S =
MinSet(fµ, w),we have f(S) < −µ.

Proof. Let v1, . . . , vn be the ordering of V returned by
GreedyMin(f, w). Recall that w(v1) ≤ w(v2) ≤ . . . ≤
w(vn). From (2.3) we see that the maximum value of
w>x over B(fµ) can be written as

w>x =

n−1∑
i=1

(f({v1, . . . , vi}) + µ)(w(vi)− w(vi+1)).

Since w>x > 0 and w(vi) − w(vi+1) ≤ 0 for i =
1, . . . , n − 1, it follows that f({v1, . . . , vi}) < −µ for
some value of i, implying the claim.

Lemma 3.3. Consider a value µ ≥ max{0,−f(V)}
such that µ = −f(W) for some W ⊆ V . Then,
Lfµ ≤ 4Lf .

The proof can be found in the full version [9].

3.1 The sliding von Neumann algorithm The
Full Support Image Algorithm uses the von Neumann
algorithm as the basic subroutine. The von Neumann
algorithm was described in [10] to find a feasible solution
to the system A>y > 0 for a matrix A ∈ Rn×p. It
can be seen as a variant of the conditional gradient
algorithm for minimizing 1

2‖y‖
2 over y = Ax,

∑
xi = 1,

x ≥ 0. The main difference between the conditional
gradient and the von Neumann algorithm is that the
latter one only needs to decide whether the optimum
value is positive. As a consequence, it does not require
a minimization oracle for y>z over the convex hull of
the columns. Instead, one only needs to decide whether
this minimum is positive, and if not, find a column ai
such that y>ai < 0. This will be important for SFM,
since we have to run the von Neumann algorithm not
over B(f), but over the convex hull of the normalized
extreme bases (with respect to a certain norm).

When applied to SFM, the von Neumann algorithm
would only be able to decide whether 0 ∈ B(f),
or equivalently, if f(S) ≥ 0 (assuming f(V) = 0).
Our sliding von Neumann algorithm (Algorithm 1)
works directly for SFM, using the adaptive shifting fµ
described above. At any point when the algorithm
would conclude 0 /∈ B(fµ), the value of µ is increased,
and the algorithm continues with the modified problem.
This technique is analogous to the sliding objective
function method when applying the ellipsoid algorithm
to optimization problems, see e.g. [4]. However, we
do not change a single constraint (corresponding to the
objective function), but modify almost every constraint
in the feasible region B(f).

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited836

D
ow

nl
oa

de
d

08
/1

7/
18

 to
 1

58
.1

43
.7

4.
20

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Algorithm 1 The sliding von Neumann algorithm

Input: A submodular function f : 2V → Z, a value µ ≥ max{0,−f(V)}, a set W ⊆ V with
f(W) = −µ, a positive definite matrix Q ∈ Rn×n, and an ε > 0.

Output:

• A value µ′ ≥ µ and a set W ′ ⊆ V with f(W ′) = −µ′,

• bases g1, . . . , gk ∈ B(fµ′), x ∈ Rk, y ∈ Rn such that y =
∑k
i=1 xigi/‖gi‖Q, ~e>x = 1,

x ≥ 0, and ‖y‖Q ≤ ε.
1: Pick g1 as an arbitrary vertex of B(fµ). Set x1 := 1, y := g1/‖g1‖Q.
2: Let k := 2.
3: while ‖y‖Q > ε do
4: Let gk ← GreedyMin(fµ, Qy).
5: if y>Qgk > 0 then . sliding
6: W :=MinSet(fµ, Qy); δ := −fµ(W); µ := −f(W);
7: Set v1 and vn to be the first and last elements of V in increasing order by the weight

vector Qy.
8: gk(v1) := gk(v1) + δ; gk(vn) := gk(v1)− δ.
9: end if

10:

λ :=

〈
y − gk

‖gk‖Q , y
〉
Q∥∥∥y − gk

‖gk‖Q

∥∥∥2

Q

;

11: y := (1− λ)y + λgk/‖gk‖Q; . min Q-norm point on [y, gk/‖gk‖Q]
12: xk := λ;
13: for i = 1, . . . , k − 1 do xi := (1− λ)xi

14: k := k + 1
return µ, W , the vectors g1, . . . , gk, x, and y.

The key feature of geometric rescaling algorithms
is that the scalar product changes from the standard
Euclidean one. The input includes a positive semidefi-
nite matrix Q ∈ Rn×n, and we use the scalar product

〈x, y〉Q
def
= x>Qy; this induces the norm ‖x‖Q

def
= 〈x, x〉Q.

The overall algorithm in Section 3.2 runs the sliding
von Neumann algorithm several times, each time with
a different scalar product Q.

Let us now give an overview of Algorithm 1. We
initialize the parameter µ = max{0,−f(V)}, and work
with fµ; µ may increase during the algorithm. We
maintain a vector y, which is a convex combination
of vectors in B(fµ), divided by their Q-norms. At
every iteration, we call GreedyMin(fµ, Qy) to obtain
an extreme base gk ∈ B(fµ) minimizing y>Qx over
B(fµ). If y>Qgk ≤ 0, then we update y to the minimum

Q-norm point on the line segment
[
y, gk
‖gk‖Q

]
(which is

given by the choice of λ in line 10).
Consider now the case y>Qgk > 0. This means

that Qy is the normal vector of a hyperplane sepa-

rating B(fµ) from 0. In particular, this implies that
minS⊆V fµ(S) < 0, that is, minS⊆V f(S) < −µ. In this
case, we “slide” the function, by updating µ to a larger
value as follows. We update W := MinSet(fµ, Qy) and
µ := −f(W). Lemma 3.2 guarantees that this strictly
increases the value of µ by a positive δ. We change gk
to represent the output of GreedyMin(fµ, Qy) for the
new value of µ; this can be obtained by changing the
first and last components of gk in the decreasing order
of the elements v of V with respect to the weight func-
tion Qy.

Lemma 3.4. Algorithm 1 terminates in d1/ε2e itera-
tions. At any point of the algorithm y/γ ∈ B(f), where

γ =
∑k
i=1 λi/‖gi‖Q.

Proof. According to Lemma 3.2, whenever we change
µ, we set a larger value, and y>Qgk ≤ 0 after the
change. According to Lemma 3.1, the polytope B(fµ)
becomes larger at this change; hence all previous gi’s
will bases in B(fµ), although they are not extreme bases

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited837

D
ow

nl
oa

de
d

08
/1

7/
18

 to
 1

58
.1

43
.7

4.
20

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

(vertices) anymore. This implies the second claim. The
iteration bound follows by the standard argument for
von Neumann’s algorithm [10]: 1/‖y‖2Q increases by at
least 1 at every update.

Similarly to Algorithm 1, one can adapt the
Fujishige-Wolfe or the line-Fujishige-Wolfe algorithm to
this setting, that is, with sliding the value µ, and using
GreedyMin(fµ, Qy) instead of GreedyMin(f, y).

3.2 Geometric rescaling algorithm for SFM Al-
gorithm Rescaling-SFM is shown in Algorithm 2. It is
the adaptation of the Full Support Image Algorithm to
our submodular setting, using the sliding von Neumann
algorithm. We need to modify the algorithm and its
analysis to reflect that the feasible region keeps chang-
ing due to the updates to the value of µ. We use the
parameters

ε
def
=

1

20n
, T

def
= 5n log(nLf,2).

The value µ keeps increasing during the algorithm; it is
updated within the sliding von Neumann subroutine.
We also maintain a set W with f(W) = −µ. The
algorithm stops after T rescalings. At this point, we
conclude from a volumetric argument that the current
W is the minimizer of f . We show the following running
time bound.

Theorem 3.1. Algorithm Rescaling-SFM finds an
optimal solution to (SFM) in time O((n4 · EO +
n5) log(nLf,2)).

Note that, the definition of T requires knowing the value
of Lf,2; we can replace it by the bound

∑
v∈V α(v)2 as

in Section 2. As noted there, this changes the overall
running time bound only by a constant factor. We also
note that the rescaling formula (3.8) uses the denomi-
nator (1 + ε)2 instead of 1 + ε as in [8]. This is needed
in the proof of Lemma 5.2 in Section 5. Nevertheless,
the analysis in [8] remains valid by choosing, as we did
here, ε smaller by a constant factor.

Let us also note that Hoberg and Rothvoß [21,
Section 2.1] present an alternative rescaling method,
which uses only rank-1 rescaling in an appropriately
chosen random direction; the algorithm admits the same
complexity bounds. This variant can also be adapted to
the SFM setting.

3.3 Analysis Let us define the ellipsoid

E(R)
def
= {x ∈ Rn : x>Rx ≤ 1}.

Further, let

(3.9)
Σµ

def
= {w ∈ Rn : w>x ≥ 0 ∀x ∈ B(fµ)},

Fµ
def
= Σµ ∩ Bn.

Σµ is the set of normal vectors of hyperplanes that
weakly separate 0 from B(fµ). A vector in the interior
of Σµ gives a strong separation, and verifies that 0 /∈
B(fµ). This in turn implies that fµ(S) < 0 for some set
S ⊆ V , and thus the minimum value of f is strictly less
than the current estimate −µ.

The main ideas of the analysis are showing that
(a) the ellipsoid E(R) contains the set Fµ at every
iteration (Lemma 3.6), and that (b) the volume of E(R)
keeps decreasing by a constant factor at every rescaling
(Lemma 3.8). For an integer valued f , one can lower
bound the volume in terms of n and Lf,2, assuming
that Fµ has a nonempty interior. Hence, at termination
one can conclude that the interior of Fµ is empty, which
implies that fµ ≥ 0, or equivalently, the minimum value
of the function is −µ for the current µ.

The analysis below provides a slightly different
argument than the volume analysis, by bounding the
Q-norm of the bases used during the algorithm. This
will be needed for the “pull-back” argument for finding
a dual certificate of optimality in Section 5.

Clearly, GreedyMin(fµ, w) can be used as a sep-
aration oracle for Σµ. Further, Lemma 3.2 implies that
if µ′ ≥ µ, then Σµ′ ⊆ Σµ and Fµ′ ⊆ Fµ.

As in [8], for a convex set X ⊂ Rn and a vector
a ∈ Rn, we define the width

widthX(a)
def
= max{a>z : z ∈ X}.

Further, we define the condition number

ω̂µ
def
= min

x∈B(fµ)\{0}

widthFµ(x)

‖x‖2
.

A key estimate for the running time analysis is the
following.

Lemma 3.5. Assume minS⊆V f(S) < −µ and µ ≥
max{0,−f(V)}.Then

ω̂µ ≥
1

4
√
nLf,2

.

Proof. Lemma 3.3 asserts Lfµ,2 ≤ 4Lf,2, that is, ‖x‖2 ≤
4Lf,2 for every x ∈ B(fµ). The claim follows by showing

(3.10) widthFµ(x) ≥ 1/
√
n.

To prove this, we note that the assumption of the lemma
implies 0 /∈ B(fµ). Let z denote the minimum norm

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited838

D
ow

nl
oa

de
d

08
/1

7/
18

 to
 1

58
.1

43
.7

4.
20

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Algorithm 2 Rescaling-SFM

Input: A submodular function f : 2V → Z.
Output: A set W minimizing f(W).

1: Set Q := In, R := In.
2: Set µ := max{0,−f(V)}.
3: if f(V) < 0 then W := V , else W := ∅.
4: for i = 1, . . . , T do
5: Call Sliding von Neumann(f, µ,W,Q, ε) to obtain the new values of µ and W , and

vectors g1, . . . , gk, x, y.
6: If y = 0, then stop; return W
7: rescale

(3.8) R :=
1

(1 + ε)2

(
R+

k∑
i=1

xi
‖gi‖2Q

gig
>
i

)
; Q := R−1.

return W .

point in B(fµ), and let ẑ = z/‖z‖2. Then for every
x ∈ B(fµ),

ẑ>x ≥ ‖z‖2.
By Theorem 2.2, if S is the minimizer of fµ, then
1 ≤ |fµ(S)| ≤

√
n‖z‖2. Thus ẑ>x ≥ 1/

√
n. Since

ẑ ∈ Fµ, this provides the bound on widthFµ(x) for every
x ∈ B(fµ).

We will use the following results from [8].

Lemma 3.6. ([8, Lemma 3.6]) Throughout the algo-
rithm, Fµ ⊆ E(R) holds.

Proof. The main part of the proof in [8] is showing
that, the said property is maintained at every rescaling.
A new phenomenon in the submodular setting is that
the set Fµ also changes when µ increases in the sliding
von Neumann algorithm. But as noted above, Fµ
only decreases in these iterations, hence the property
is maintained.

Lemma 3.7. ([8, Lemma 3.7]) Throughout the algo-
rithm, ‖x‖Q ≥ ω̂µ‖x‖2 must hold for every x ∈ B(f).

Proof. This follows by [8, Lemma 2.15], asserting that
‖x‖Q = widthE(R)(x), and from the definition of ω̂µ.

Lemma 3.8. ([8, Lemma 3.8]) The determinant of R
increases at least by a factor 16/9 at every rescaling.

Lemma 3.9. ([8, Lemma 3.9]) At any stage of the al-
gorithm, there exists a point gk ∈ B(fµ) used during one
of the previous sliding von Neumann iterations with

‖gk‖Q ≤
‖gk‖2√

det(R)1/n − 1
.

Proof of Theorem 3.1. The algorithm performs T =
5n log(nLf,2) rescalings. Lemma 3.8 shows that after T
rescalings, det(R) ≥ (16/9)T . Then Lemma 3.9 implies
that, after T rescalings, there exists a point gk ∈ B(fµ)
with ‖gk‖Q < ‖gk‖2/(4nLf,2). Now Lemma 3.7 would
contradict Lemma 3.5 if the assumption minS⊆V f(S) <
−µ were true. Since the algorithm maintains a set W
with f(W) = −µ, we can conclude that f(W) = −µ =
minS⊆V f(S). This shows that the algorithm correctly
terminates.

The algorithm calls the sliding von Neumann sub-
routine T = O(n log(nLf,2)) times; each call takes at
most d1/ε2e = O(n2) iterations. At the kth iteration
of von Neumann, it takes time time O(n ·EO + n log n)
to run GreedyMin and time O(k) to update the coeffi-
cients x1, . . . , xk. These give a bound of O(n3 ·EO+n4)
for each sliding von Neumann subroutine.

Further, every rescaling has to compute O(n2) outer
products gig

>
i , add their weighted sum to R, and com-

pute Q = R−1. The computation is dominated by
computing the outer products, which take altogether
O(n4) time. Hence the iterations between two subse-
quent rescalings take time O(n3 ·EO +n4), yielding the
claimed complexity bound.

4 Strongly polynomial algorithms

In this section, we provide a general scheme to convert
an approximate SFM algorithm to a strongly polyno-
mial one. We assume that the SFM algorithm is pro-
vided via the following oracle.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited839

D
ow

nl
oa

de
d

08
/1

7/
18

 to
 1

58
.1

43
.7

4.
20

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Oracle Approx-SFM
Input: A submodular function f : 2V → Z and
δ > 0.
Output: A set W ⊆ V , and a vector y ∈ B(f) such
that

f(W) ≤ y−(V) + δLf .

Further, assume y is given as a convex combination
of bases of B(f).

The set W returned by the oracle is clearly within
δLf from the optimal solution to (SFM). In particular,
if δ < 1/Lf , then W is optimal.

Let AO(f, δ) denote the running time of the oracle.
We assume that the oracle makes at least one call to
the greedy algorithm, which implies that AO(f, δ) is at
least n·EO. Various algorithms in the literature provide
implementations of the approximation oracle. Among
them:

• the conditional gradient method, in time O((n2 ·
EO + n2 log n)δ−2) (Theorem 2.4);

• the Fujishige-Wolfe algorithm in O((n3 · EO +
n5)δ−2) (Theorem 2.5);

• the Iwata-Orlin weakly polynomial algorithm [24],
in time O((n4 · EO + n5) log(nδ−1));3

• the Sidford-Lee-Wong cutting plane method in
O(n2 · EO log(nδ−1) + n3 logO(1)(nδ−1)) (see Sec-
tion 6).

The following theorem shows how the oracle can
be implemented using Rescaling-SFM. This will be
proved in Section 5.

Theorem 4.1. Setting T = O(n log(nδ−1)) in Algo-
rithm 2, from its output one can compute a set W ⊆ V
and a point y ∈ B(f), expressed as a convex combi-
nation of O(n3 log(nδ−1)) extreme bases of B(f), such
that f(W) ≤ y−(V) + δLf . The running time is
O((n4 · EO + n5) log(nδ−1)).

Finding a dual certificate in Rescaling-SFM
For an integer valued f , a pair W and y satisfying the
requirements of Approx-SFM(f, 1/Lf) are an optimal
pair of primal and dual solutions as in Theorem 2.1.
Hence the algorithm of Theorem 4.1 for δ = 1/Lf
provides a dual certificate of optimality in time O((n4 ·
EO + n5) log(nLf)), the same as the complexity bound
as in Theorem 3.1 (using that Lf ≤

√
nLf,2).

3This is not explicitly stated in [24], however their analysis
shows that, in time O((n4 ·EO+n5) log(nδ−1)), they obtain a set
W ⊆ V and a point x ∈ B(f) such that x(W) = f(W), x(v) ≥ 0
for all v ∈ V \W , and Φ(x) :=

∑
v∈W (x+(v))2 ≤ δ2L2

f/n. This

implies that f(W) = x−(W) + x+(W) ≤ x−(V) +
√
nΦ(x) ≤

x−(V) + δLf .

Identifying the structure of optimal solutions
The following lemma provides a simple way to identify
sets that must be contained in every optimal solution.

Lemma 4.1. Let y and W denote the output of
Approx-SFM(f, δ). If y(v) < −δLf , then v must be
contained in every minimizer of f .

Proof. Let S ⊆ V \ {v}. Then f(S) ≥ y(S) ≥ y−(V \
{v}) ≥ f(W)− y(v)− δLf > f(W). This shows that S
cannot be an optimal solution to (SFM).

Once we find such an element v, minimizing f can be
reduced to minimizing the contraction f ′ : 2V \{v} → Z,

defined as f ′(S)
def
= f(S∪{v})−f({v}). Our other main

tool to identify structural properties of optimal solutions
is the following.

Lemma 4.2. Let y ∈ B(f), U ⊆ V , and v ∈ V \ U .
Assume that y(v) > −y−(V \ U). Then any minimizer
to (SFM) that contains v must contain some element of
U .

Proof. Let S ⊆ V \ U , v ∈ S. Then f(∅) = 0 <
y(v)+y−(V \U) ≤ f(S), hence S cannot be a minimizer.

4.1 Ring families A set family F ⊆ 2V is called
a ring family, if X,Y ∈ F implies X ∩ Y,X ∪ Y ∈
F . The function f : F → Z is a submodular
function over the ring family F , if (1.1) holds for
any X,Y ∈ F . Submodular function minimization
over ring families has been well-studied and can be
reduced to standard submodular function minimization
[31, Chapter 49]. This is the underlying framework
of the strongly polynomial SFM algorithm by Iwata,
Fleischer, and Fujishige [23], and has been subsequently
used in several other algorithms, e.g. in [24, 27].
Starting with the entire ring family F = 2V , these
algorithms make progress by gradually restricting the
function to a smaller ring family that must contain all
minimizers. Our algorithm follows the same overall
scheme.

A compact representation of a ring family can be
obtained via a directed graph (V, F) such that X ∈
F if and only if δ+

F (X) = 0, that is, no arc in F
leaves X. In what follows, let us assume that F is
an acyclic graph. This is without loss of generality,
since strongly connected components can be contracted
to single vertices; indeed, given the set of elements
C defining a strongly connected component of F , any
minimizer of (SFM) must either contain C or be disjoint
from C.

The acyclic graph D = (V, F) defines a partial order
�F . We have u �F v if there exists a directed path in
F from v to u. In other words, u �F v if and only if u is

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited840

D
ow

nl
oa

de
d

08
/1

7/
18

 to
 1

58
.1

43
.7

4.
20

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

contained in every X ∈ F that contains v. We say that
an ordering of the vertices is consistent with the graph
F , if u is ordered before v whenever u �F v.

The following definitions and results are similar to
those in [31, Section 49.3]. For a set X ⊆ V , let

X↓
def
= {u ∈ V : ∃v ∈ X,u � v},

X↑
def
= {u ∈ V : ∃v ∈ X, v � u}

x↓
def
= {x}↓, x↑

def
= {x}↑.

Thus, X↓ is the unique minimal element of F containing
X. We define

`(v)
def
= f((V \ v↑) ∪ {v})− f(V \ v↑).

Let us define f↓ : 2V → Z by

f↓(X)
def
= f(X↓)− `−(X↓ \X).

The following three statements are proved in the full
version [9].

Lemma 4.3. The function f↓ is submodular on 2V with
f↓(S) ≥ f(S↓) for all S ⊆ V and f↓(S) = f(S) for
every S ∈ F . Consequently, minimizing f on the ring
family F is equivalent to minimizing f↓ on 2V . The
complexity of GreedyMin(f↓, w) can be bounded by
O(n·EO+n2), where EO is the complexity to evaluating
f .

Claim 4.1. For every v ∈ V , `(v) = f↓(V) − f↓(V \
{v}). In particular, y(v) ≥ `(v) for every y ∈ B(f↓).

We will use the following bound on the complexity
parameter of f↓.

Claim 4.2. Assuming that f(V) ≤ 0, we have
|`−(V)|/|V | ≤ Lf↓ ≤ 2|`−(V)|.

4.2 The basic strongly polynomial scheme Al-
goritm 3 builds a ring family F represented by a di-
rected graph F with the property that F contains all
optimal solutions to (SFM); thus, minimizing f is equiv-
alent to minimizing the modified function f↓. We for-
mulate the algorithm with a general value of δ, and
show that it terminates within n2 iterations for the
choice δ = 1/(3n3). In particular, we show the fol-
lowing running time bound. We denote by AO↓(f, δ)
the maximum AO(f↓, δ), where f↓ ranges over all pos-
sible choices of ring families F containing all optimal
solutions to (SFM).

We note that, since as in Lemma 4.3, Greedy-
Min(f↓, w) uses time O(n2 ·EO + n2) instead of O(n2 ·
EO + n log n), thus AO↓(f, δ) is upper bounded by

the worst case running time bound on AO(f, δ) plus
n/ log(n) times the worst case bound on the number of
calls to the greedy algorithm of AO(f, δ).

Theorem 4.2. Using δ = 1/(3n3), Algoritm 3
finds the optimal solution to (SFM) in time
O(n2AO↓(f, 1/(3n3)) + n3k · EO + n4k), where k
is an upper bound on the number of extreme bases in
the convex combination returned by Approx-SFM.

Using the bounds from Theorems 2.4 and 2.5, we
obtain O(n10 ·EO +n11) using the conditional gradient
algorithm, and O(n11 · EO + n12) using the Fujishige-
Wolfe algorithm. Note that, k = O(n/δ2) = O(n7) for
conditional gradient, whereas k = O(n) for Fujishige-
Wolfe. While these running times are high polynomials,
we emphasize that they can be obtained by repeated
applications of simple iterative methods, without using
any form of scaling.

Theorem 4.1 gives a running time O((n6 · EO +
n7) log n) using the Rescaling-SFM algorithm. In
Section 4.3, we give an enhanced version of the algo-
rithm with running time O((n5 · EO + n6) log2 n).

Let us now give an overview of Algoritm 3. Each
main iteration calls the oracle Approx-SFM(f↓, δ).
Two types of contractions are used. All cycles in F
can be contracted to single elements, since an optimal
solution can contain either all or no element of a
cycle (line 12). The other type of contraction (in
line 9) reduces the size of the ground set by eliminating
elements that must be contained in every optimal
solution. The set T represents the set of elements
eliminated by contractions. Thus, the submodular
function at the current stage will be defined as f(S ∪
T) − f(T) for the original input function f , with the
possible exception of f(V). Therefore, the complexity
of evaluating the current f is still EO. We will use n
below to denote the size of the original ground set V .

The other main step of the algorithm is adding new
arcs to F . The following lemma shows the validity of
these steps and that either of these operations should
occur in every iteration.

Lemma 4.4. Every v ∈ V contracted in line 9 must be
contained in all minimizers of (SFM), and every arc
(v, z) added to F in line 7 satisfies the property that
every minimizer that contains v must also contain z.
If δ ≤ 1/(3n3), then every iteration either contracts an
element or adds a new arc to F .

Proof. In line 6, Lemma 4.2 implies that every mini-
mizer of f↓ that contains v, must also contain some
element of z↑. By definition, if a minimizer contains
an element of z↑, then it must contain z. It follows

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited841

D
ow

nl
oa

de
d

08
/1

7/
18

 to
 1

58
.1

43
.7

4.
20

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Algorithm 3 The basic strongly polynomial algorithm

Input: A submodular function f : 2V → Z with f(V) ≤ 0, and δ > 0.
Output: An optimal solution to (SFM)

1: Initialize F := ∅, T := ∅.
2: while `−(V) < 0 do
3: Call Approx-SFM(f↓, δ) to obtain W and y ∈ B(f↓), represented as a convex

combination y =
∑k
i=1 xigi.

4: for z ∈ V such that f(V \ z↑) > −|V | · y−(V \ z↑) do

5: Compute y′ =
∑k
i=1 xig

′
i by bringing all elements of z↑ backward in the order

defining gi.
6: for v ∈ V \ z↑ such that y′(v) > −y′−(V \ z↑) do
7: add arc (v, z) to F .

8: for v ∈ V such that (y(v) < 2`−(V)δ) do . contraction
9: Replace f by f(S ∪ v↓)− f(v↓) on the ground set V := V \ v↓.

10: Set f(V) := min{0, f(V)}.
11: Set T := T ∪ v↓.
12: Contract all strongly connected components of F to single nodes.

return the pre-image of T in the original ground set.

that every minimizer containing v must also contain z,
therefore the new arc (v, z) is valid.

Consider a v such that y(v) < 2`−(V)δ in line 9.
Lemma 4.1 and Claim 4.2 imply that v is contained in
every minimizer of f↓, and so must be also all elements
of v↓. By induction, we must have that v↓ is contained
in every minimizer of f .

Finally, we need to show that if δ ≤ 1/(3n3),
then every iteration adds some arc to F in line 6 or
contracts some element in line 9. Note that, if the
algorithm enters the while loop when |V | = 1, say
V = {v}, then y(v) = f(V) = `−(V) < 2`−(V)δ, so
the algorithm contracts v in line 9, and subsequently
terminates. Assume that |V | ≥ 2 and that no element
is contracted in line 9. Then y(v) ≥ 2`−(V)δ for all
v ∈ V , and thus

(4.11) f↓(S) ≥ y−(V) ≥ 2|V | · `−(V)δ ∀S ⊆ V.

Since f↓(S) = f(S) for S ∈ F , and F contains all
minimizers of f , we have that

(4.12) f(S) ≥ 2|V | · `−(V)δ ∀S ⊆ V.

Note that, by construction and from the fact that
V \ z↑ ∈ F , for every i ∈ [k] we have g′i(V \ z↑) =
f↓(V \ z↑) = f(V \ z↑), and g′i(u) ≥ gi(u) for every
u ∈ V \ z↑. It follows that y′(V \ z↑) = f(V \ z↑) and
y′(u) ≥ y(u) for all u ∈ V \ z↑.

Assume that f(V \ z↑) > −|V | · y−(V \ z↑), as in

the condition in line 4. It follows that

y′(V \ z↑) = f(V \ z↑) > −|V | · y−(V \ z↑)
≥ −|V | · y′−(V \ z↑).

This in turn implies the existence of v ∈ V \ z↑ such
that y′(v) > −y′−(V \ z↑) in line 6.

Finally, we show that if (4.12) holds, then at least
one z ∈ V satisfies

(4.13) f(V \ z↑) > |V | · |y−(V)|,

a bound which is slightly stronger than the condition
f(V \ z↑) ≥ −|V | · y−(V \ z↑) in line 4. Hence, at least
on new arc will be added to F . We choose z ∈ V such
that `(z) is the most negative possible. In particular,
`(z) ≤ `−(V)/|V |. By (4.12) we have

(4.14)

`−(V)

|V |
≥ `(z) = f((V \ z↑) ∪ {z})− f(V \ z↑)

≥ 2|V | · `−(V)δ − f(V \ z↑).

Consequently,

f(V \ z↑) ≥ |V | · |`−(V)| ·

(
1

|V |2
− 2δ

)
.

From the assumption δ ≤ 1/(3n3) ≤ 1/(3|V |3) we

obtain 1/|V |2 − 2δ ≥ 2|V |δ since |V | ≥ 2. Therefore
(4.13) follows since

f(V \ z↑) ≥ 2|V |2 · |`−(V)|δ ≥ |V | · |y−(V)|.

The final inequality follows using (4.11).

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited842

D
ow

nl
oa

de
d

08
/1

7/
18

 to
 1

58
.1

43
.7

4.
20

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Proof of Theorem 4.2 Lemma 4.4 justifies the contrac-
tion steps and the addition of new arcs to F , and shows
that the number of main iterations is at most n2. Let
us also note that after every contraction, we decrease
the value of f(V) if it becomes positive (that is, if
f(V) > f(v↑) before the contraction of v). This op-
eration clearly maintains submodularity. It is also safe
in the sense that it may not lead to an incorrect out-
put with respect to the original function. Indeed, note
that at termination the algorithm returns the current
set of T , which are elements that must be contained in
every minimizer of the original function. Hence, the al-
gorithm outputs the unique minimal solution to (SFM).
On the other hand, if f(V) was ever decreased, then we
decrease it to the same value as f(∅). Therefore it can
never become the unique minimizer. If the algorithm
terminates with the entire ground set V , then it follows
that f(V) was never decreased during the algorithm.

Let us now estimate the running time. Besides the
calls to Approx-SFM, the running time is dominated
by computing the g′i bases in line 5, which altogether
require O(nk ·EO +n2k) for every iteration, and this is
required O(n2) times.

4.3 Speeding up the algorithm The algorithm
described in the previous section needs to identify O(n2)
arcs in F . In the worse case, each iteration may only
identify a single arc, resulting in O(n2) calls to Approx-
SFM.

On the other hand, if we were able to guarantee
that |`−(z)| is within a factor O(nb) from |`−(V)| for a
constant fraction of all z ∈ V for some constant b ≥ 1,
the analysis in the proof of Lemma 4.4 implies that
for δ = 1/O(nb+2) we would guarantee f(V \ z↑) ≥
−ny−(V \ z↑) for all such z ∈ V . Thus, after running
Approx-SFM(f↓, 1/O(nb+2)), we could extend F by
Θ(n) new arcs.

If this property held in all iterations, then O(n)
calls to Approx-SFM would suffice. However, the
the number of z ∈ V with |`−(z)| value “close” to
|`−(V)| can be o(n). To deal with this situation, we
apply the “bucketing” technique of Lee, Sidford, and
Wong [27]. Instead of the entire V , we restrict our
function in every iteration to a suitably chosen V̄ ⊆
V , and run Approx-SFM restricted to this set with
δ = n−O(logn). We will obtain θ(V̄) new arcs in this
iteration. Thus, if Approx-SFM has running time
O((|V̄ |4 · EO + |V̄ |5) log2 n), then the amortized cost of
extending F by an arc will be O((n3 · EO + n4) log2 n).

We note that this improvement is only applicable if
AO(f, δ) depends logarithmically on 1/δ. Since δ can be
quasi-polynomial, the conditional gradient or Fujishige-
Wolfe methods would not even be polynomial in this

framework.
The following lemma adapts the argument in Sec-

tion 15.4.1 in [27].

Lemma 4.5. Let f : 2V → Z be a submodular function,
F a ring family containing all minimizers of f , and
f↓ : 2V → Z be the corresponding function defined by f
and F . Then in O(n ·EO) time we can find a nonempty
subset V̄ ⊆ V and a positive integer b = O(log n), such
that

• For every z ∈ V \V̄ , we have `(z) > 2`−(V)/(2n)4b.

• There exist at least |V̄ |/2 distinct z ∈ V̄ such that
`(z) ≤ 2`−(V)/(2n)4b−4.

Proof. Let us define V t
def
= {z ∈ V : `(z) ≤

2`−(V)/(2n)4t} for t = 1, 2, Clearly, V 1 6= ∅, as
it contains z with the smallest `(z) value. Let b be
the smallest value such that |V b| ≤ 2|V b−1|. Clearly,
b = O(log n), and choosing V̄ = V b satisfies both re-
quirements.

For the set V̄ and value b as in the lemma, let
f̄ : 2V̄ → Z denote the restriction of f↓ to the ground
set V̄ , and let us set

(4.15) δ̄
def
=

1

(2n)4b
, δ

def
=

2n2 + 1

(2n)4b
,

Let us call Approx-SFM(f̄ , δ̄) to obtain the vector
ȳ ∈ B(f̄) defined as a convex combination of extreme
bases ḡ1, . . . , ḡk ∈ B(f̄), and a set W ⊆ V̄ such that
f̄(W) ≤ ȳ−(V̄) + δ̄Lf̄ .

Let us now extend ȳ ∈ RV̄ to y ∈ RV as follows.
For v ∈ V̄ , we let y(v) = ȳ(v). Then, consider an
arbitrary order v1, . . . , vn−|V̄ | of V \ V̄ , and set y(vj) :=

f↓(V̄ ∪ {v1, . . . , vj}) − f↓(V̄ ∪ {v1, . . . , vj−1}). Let us
also define g1, . . . , gk ∈ RV , by gi(v) = ḡi(v) for v ∈ V̄ ,
gi(v) = y(v) for v ∈ V \ V̄ (i = 1, . . . , k). Note that, by
definition, g1, . . . , gk are extreme bases of B(f↓), and y
is a convex combination of g1, . . . , gk.

Lemma 4.6. For the vector y and set W as above, we
have that y ∈ B(f↓), and f↓(W) ≤ y−(V) + δLf↓ .

Proof. By definition f↓(W) = f̄(W) and Lf̄ ≤ Lf↓ ,

because f̄ is a restriction of f↓. Therefore,

f↓(W) ≤ ȳ−(V̄) + δ̄Lf↓ .

Claim 4.3. y(v) ≥ `−(v) for every v ∈ V \ V̄ .

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited843

D
ow

nl
oa

de
d

08
/1

7/
18

 to
 1

58
.1

43
.7

4.
20

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Proof. If v = vj , then y(v) = f↓(V̄ ∪ {v1, . . . , vj}) −
f↓(V̄ ∪ {v1, . . . , vj−1}) ≥ f↓(V) − f↓(V \ {v}) by
submodularity. Further, f↓(V) − f↓(V \ {v}) ≥ `−(v)
by Claim 4.1.

We have y−(V) = ȳ−(V̄) + y−(V \ V̄). By the choice
of V̄ , we have `−(v) ≥ 2`−(V)/(2n)4b = 2`−(V)δ̄ for
every v ∈ V \ V̄ . Using the claim above, we get
y−(V \ V̄) ≥ 2n`−(V)δ̄. Thus, y−(V) ≥ ȳ−(V̄) +
2n`−(V)δ̄ ≥ ȳ−(V̄)−2n2δ̄Lf↓ . Here, the last inequality
used the lower bound in Claim 4.2. Consequently,

f↓(W) ≤ y−(V) + (2n2 + 1)δ̄Lf↓ = y−(V) + δLf↓ .

This proof shows that we can implement Approx-
SFM(f, δ) by calling Approx-SFM(f̄ , δ̄), and adding
the remaining V \ V̄ elements by O(n) value oracle
queries, which is time O(n · EO + n2) for the function
f↓.

Let us modify Algorithm 3 as follows. In every
iteration, we compute V̄ and b as in Lemma 4.5, and use
this modified implementation of Approx-SFM with δ
as defined in (4.15).

Theorem 4.3. The above described modification of Al-
gorithm 3 finds an optimal solution to (SFM) in time
O(n · AO↓(f, n−O(logn)) + n3k · EO + n4k), where k
is an upper bound on the number of extreme bases
returned by Approx-SFM. Using the implementation
with Rescaling-SFM, the running time is O((n5·EO+
n6) log2 n).

Proof. They key observation is that, at every call of
the approximation oracle, if no nodes are contracted at
line 9, then at least 1

2 |V̄ | new arcs are added to F .
This follows by showing that f(V \ z↑) > −|V | ·

y−(V \z↑) holds for at least half of the elements z of V̄ .
Indeed, as in the proof of Lemma 4.4, we can assume
that y(v) ≥ 2`−(V)δ for all v ∈ V and that (4.12) holds.

By Lemma 4.5 and our choice of V̄ , half of the
elements of V̄ satisfy `(z) ≤ 2`−(V)/(2n)3b−3 =
2`−(V)δ(2n)4/(2n2 + 1). Hence, as in (4.14), the as-
sumption (4.12) implies that

f(V \ z↑) ≥ 2|V | · `−(V)δ − `(z)

≥ 2|V |2 · |`−(V)|δ
(

(2n)4

|V |2(2n2 + 1)
− 1

|V |

)
> |V | · |y−(V)|,

where the last inequality uses that |y−(V)| ≤ 2|V | ·
|`−(V)|δ because of the assumption y(v) ≥ 2`−(V)δ for
all v ∈ V , and that the expression in the brackets is ≥ 1
for n ≥ 2.

The running time of Approx-SFM(f̄ , δ̄) is
AO(f̄ , n−O(logn)). Consequently, the amortized cost

of an oracle call per new arc is AO(f̄ , n−O(logn))/|V̄ |.
Since AO depends at least linearly on |V̄ |, this can be
upper bounded by AO(f, n−O(logn))/|V |. Hence, the
total time of the oracle calls is O(n · AO(f, n−O(logn)),
which is O((n5 · EO + n6) log2 n) for Rescaled-SFM.
We also have to recompute the convex combinations in
line 5. For every new arc, this requires recomputing k
extreme bases, in total time O(n3k · EO + n4k).

5 The pull-back technique for Rescaling-SFM

The main purpose of this section is to prove The-
orem 4.1, that is implement Approx-SFM using
Rescaling-SFM. We will use a “pull-back” technique.
Recall that in Rescaling-SFM, we keep modifying the
matrix Q defining the scalar product. Lemmas 3.8 and
3.9 guarantee that after t rescalings, there we can iden-
tify a vector g ∈ B(fµ) that has a small Q-norm for
the current Q, and the bound decreases geometrically
with t. Our key technical claim, Lemma 5.2, shows a
constructive way to identify a vector v ∈ B(fµ) with
‖v‖2 ≤ ‖g‖Q. Provided a vector v with small 2-norm
(and thus small 1-norm), we can easily satisfy the re-
quirements of the Approx-SFM, using the following
lemma.

Lemma 5.1. Let µ ≥ max{0,−f(V)} and W ⊆ V such
that f(W) = −µ. Let µ1, µ2, · · · , µh ∈ [0, µ], and for
i = 1, . . . , h let gi be a basis of the base polytope B(fµi).

Given v =
∑h
i=1 λigi where λ ≥ 0 and

∑h
i=1 λi = 1,

in time O(nh) we can compute y ∈ B(f), given as a
convex combination of h extreme bases of B(f), such
that

f(W) ≤ y−(V) +
‖v‖1

2
.

See the full version [9] for a proof.
Our next Lemma enables pulling back a vector with

small Q-norm to a vector with no larger 2-norm. This
is done gradually, by pulling back at each rescaling of
Rescaling-SFM. The columns of the matrix A will be
the bases used in the current iteration of the sliding von
Neumann algorithm. We also note that this technique is
applicable to the general Full Support Image Algorithm
in [8], enabling to find approximate solutions as well as
dual certificates of infeasibility.

Lemma 5.2. Let A ∈ Rn×p, R ∈ Sn+, and Q = R−1.
Let x ∈ Rp+ such that y :=

∑p
i=1 xi

ai
‖ai‖Q satisfies

‖y‖Q ≤ ε. Define

(5.16) R′
def
=

1

(1 + ε)2

(
R+

p∑
i=1

xi
‖ai‖2Q

aia
T
i

)
,

and Q′
def
= (R′)−1. For every v ∈ Rn, there exists µ ∈ Rp+

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited844

D
ow

nl
oa

de
d

08
/1

7/
18

 to
 1

58
.1

43
.7

4.
20

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

such that ‖v +Aµ‖Q ≤ ‖v‖Q′ . Moreover, such a vector
µ can be computed in time O(n2p).

See the full version [9] for a proof.
We are ready to prove Theorem 4.1, showing how

Approx-SFM can be implemented using Rescaling-
SFM.
Proof of Theorem 4.1. Run algorithm Rescaling-
SFM(f), setting the limit on the number of rescalings
to a number T = cn log(nδ−1) for some constant c to be
specified later. At the end of the execution, we identified
a value µ and a set W ⊆ V such that f(W) = −µ.
Let g1, . . . , gh be all the points in B(fµ) used in the
sliding von Neumann iterations during the execution of
the algorithm.

By Lemma 3.9, for an appropriate choice of c, after
T rescalings there exists k ∈ [h] such that

‖gk‖Q ≤
2δ

3
√
n
‖gk‖2.

Let ĝk = gk/‖gk‖2. The running time of Rescaling-
SFM(f) with the above choice of T is O((n4EO +
n5) log(nδ−1)). Note also that h ∈ O(n3 log(nδ−1)),
thus finding k requires time O(n5 log(nδ−1)) to compute
the Q-norms of g1, . . . , gh.

By applying Lemma 5.2 for T times (considering
the rescaling matrices used in the algorithm in reverse
order), we can find a vector µ ∈ Rh+ such that ‖ĝk +∑h
i=1 µigi‖2 ≤ ‖ĝk‖Q. Recall that each rescaling matrix

is defined by at most n2 vectors among g1, . . . , gh,
therefore each application of Lemma 5.2 requires time
O(n4) (assuming that the matrices Q and R used at
every rescaling are saved in memory so we do not need
to recompute them). Thus, overall, the time required
to compute µ is O(n5 log(nδ−1)).

Define α = 1 + ‖gk‖2 ·
∑h
i=1 µi, and λ ∈ Rh+ by

λi =

{
‖gk‖2µi

α i ∈ [h] \ {k}
1+‖gk‖2µk

α i = k

Define v :=
∑h
i=1 λigi. Observe that

∑h
i=1 λi = 1, thus

v ∈ Bfµ . Computing v requires time O(n4 log(nδ−1)),
since we need to sum h n-dimensional vectors.

Furthermore,

‖v‖1 ≤
√
n‖v‖2 =

√
n
‖gk‖2
α

∥∥∥∥∥ĝk +
h∑
i=1

µigi

∥∥∥∥∥
2

≤
√
nLfµ,2‖ĝk‖Q ≤ 2δLf ,

where the last inequality follows from the fact that
Lfµ,2 ≤ Lfµ ≤ 3Lf by Lemma 3.3. By Lemma 5.1,
in time O(n4 log(nδ−1)) we can compute y ∈ B(f)

satisfying f(W) ≤ y−(V) + ‖v‖1
2 ≤ y−(V) + δLf .

Remark 5.1. The bound O(n5 log(nδ−1)) for comput-
ing µ in the above proof was assuming O(n2) time for
computing Q-scalar products 〈g, u〉Q. We note that
this can be easily improved by a factor n: we can
assume that Qg was precomputed and stored during
Rescaling-SFM for all bases g used during the se-
quence of rescalings. Indeed, it was necessary to com-
pute the norms ‖g‖Q in the sliding von Neumann algo-
rithm. Thus, the bound improves to O(n4 log(nδ−1));
however, this does not change the overall running time
estimate.

6 Cutting plane method

The current best cutting plane method for finding a
point in a convex set provided by a separation oracle is
due to Lee, Sidford, and Wong [27]. If κ is n times
the ratio of the radius of an initial ball containing
the convex feasible region and the radius of a ball
contained inside, then their algorithm finds a feasible
point in O(n · SO log κ + n3 logO(1) κ), where SO is the
complexity of an (exact) separation oracle. In Part III
of their paper, they apply this algorithm for submodular
function minimization, and obtain the current best
running time bound, O(n3 log2 n·EO+n4 logO(1) n) (see
[27, Section 15.4]). This is obtained by combining their
cutting plane algorithm with an improved version of the
combinatorial framework of ring families; one of their
important new contributions is the bucketing technique
we also use in Section 4.

In this section, we present an alternative way of ap-
plying their cutting plane method to SFM. We prove the
same running time bound in a substantially simplified
way. Firstly, instead of using the Lovász extension as
in [19] and in [27], we apply the cutting plane method
to find a feasible solution in Fµ, as defined in (3.9). We
use the sliding technique as in Section 3 for the cutting
plane algorithm. Secondly, we employ the combinato-
rial framework in a black-box manner, by implement-
ing Approx-SFM via the Lee-Sidford-Wong algorithm.
The combinatorial interpretation of the certificate re-
turned by the cutting plane method turns out to be
much easier than in [27].

Weakly polynomial algorithm Let us start by
exhibiting a weakly polynomial O(n2 log(nLf,2) · EO +

n3 logO(1)(nLf,2)) algorithm for SFM, which is the
same as the running time in [27]. We use a slight
modification of the cutting plane algorithm [27, Section
6.4, Algorithm 2].

We start with µ = max{0,−f(V)}, and maintain
a set W with f(W) = −µ throughout. For the
current iterate x(k), GreedyMin(fµ, x

(k)) is used as
the separation oracle for int(Fµ), which returns an
extreme base g of B(fµ). If g>x(k) > 0, then x(k) ∈

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited845

D
ow

nl
oa

de
d

08
/1

7/
18

 to
 1

58
.1

43
.7

4.
20

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

int(Fµ), thus, x(k) is feasible. In this case, instead
of terminating, we modify the value of µ as in the
sliding von Neumann algorithm. That is, we set W =
MinSet(fµ, x

(k)), and set the new value µ′ = −f(W).
From Lemma 3.2, we see that x(k) /∈ int(Fµ′). Thus,
we can continue with adding a new cutting plane.
Note that Fµ′ ⊆ Fµ if µ′ > µ. Hence, all previous
separations remain valid. (Again, this is similar to the
sliding objective technique, although we are changing
all constraints of the polytope simultaneously.) When
−µ is the minimum value of f , Lµ has no points in
the interior, therefore we stop when the volume of the
current relaxation becomes too small.

In this setting, we have SO = n · EO + n log n. For
every value of µ, Fµ ⊆ Bn by definition, and Lemma 3.5
implies that, as long as minS⊆V f(S) < −µ, Fµ contains
a ball of radius 1/(4

√
nLf,2). Hence, κ = O(

√
nLf,2),

giving the desired running time bound.
Let us note that, even using the original ellipsoid

method, as in Grötschel, Lovász, and Schrijver [19],
one can obtain O((n3 · EO + n4) log(nLf,2)), since the
original ellipsoid algorithm finds a feasible point in time
O((n2 ·SO+n4) log κ) in the oracle model. Interestingly,
even such a simple and direct use of the standard
ellipsoid method, compared to the usual approach of
minimizing the Lovász extension, provides a running
time that is a factor n lower than any weakly-polynomial
SFM-algorithm known prior to the work of Lee-Sidford-
Wong [27].

Strongly polynomial algorithm Let us now
show an O((n4 · EO + n5) log(nδ−1)) implementation
of Approx-SFM(f, δ) using the Lee-Sidford-Wong cut-
ting plane method. We use Theorem 31 from [27]. For
K = Fµ (for any value of µ), by definition Fµ ⊆ Bn ⊆
Bn∞(1), that is, R = 1. Due to the sliding, the algo-
rithm cannot find a feasible solution, and thus it always
returns a thin direction as follows.

Theorem 6.1. ([27, Theorem 31]) For any ε ∈
[0, 1], in expected time O(n log(n/ε)) · SO +

n3 logO(1)(n/ε)), the (sliding) cutting plane method
returns a value µ, and constraints a>i x ≥ bi for i ∈ [h],
where h = O(n), ‖ai‖2 = 1, which are all valid for
Fµ. Each of these constraint is either an original
box constraint, that is xj ≥ −1 or −xj ≥ −1, or an
inequality returned by the separation oracle. Let P
denote the intersection of these hyperplanes.

Further, we obtain non-negative numbers
t1, t2, t3, . . . , th with t1 = 1, and a point x∗ ∈ P ,
which satisfy the following:

(a) ‖x∗‖2 ≤ 3
√
n,

(b)
∥∥∥∑h

i=1 tiai

∥∥∥
2

= O(
√
nε log(1/ε)),

(c) a>i x
∗ − bi ≤ ε,

(d)
(∑h

i=1 tiai

)>
x∗ −

∑h
i=1 tibi ≤ O(

√
nε log(1/ε)).

The output certifies that the region P ∩Bn∞(1) has small

width in the direction of a1. In fact, for ā =
∑h
i=1 tiai

and b̄ =
∑h
i=1 tibi, the valid inequality ā>x ≥ b̄ is

“close” to −a>1 x ≥ −b1. Indeed, from (b) we see that
a>1 x+ā>x = O(nε log(1/ε)) for every x ∈ Bn∞(1). Then,
(c) and (d) imply that b1 + b̄ = O(nε log(1/ε)).

We show that for an appropriately chosen ε, this
can be used to implement Approx-SFM(f, δ).

Lemma 6.1. For an appropriate ε such that δ =
Ω(n3/2ε log(1/ε)), from the output of the cutting plane
method we can obtain W and y as required for Approx-
SFM(f, δ), that is, f(W) ≤ y−(V) + δLf .

Proof. Let [h] = Ib ∪ Is, where Ib is the set of indices
i such that a>i xi ≥ bi is a box constraint, and Is is
the set of indices corresponding to constraints from the
separation oracle. Each constraint in Is is of the form
ai = gi/‖gi‖2 and bi = 0, where gi is an extreme base of
B(fµi), where µi ≤ µ was the value of µ at the time this
cutting plane was added. The lemma will easily follow
from the next claim.

Claim 6.1. The index 1 is in Is, and
∥∥∑

i∈Is tiai
∥∥

2
=

O(nε log(1/ε)).

Proof. First, we show that 1 ∈ Is. For a contradiction,
assume that 1 ∈ Ib, that is, a1 = ej or a1 = −ej
for some j ∈ [n] and b1 = −1. As noted above,
b1 + b̄ = O(nε log(1/ε)); hence, b̄ > 0 follows (for small
enough ε). This is a contradiction, since bi = −1 for all
i ∈ Ib, and bi = 0 for all i ∈ Is.

Thus, 1 ∈ Ib, and therefore b1 = 0.
Thus, b̄ = O(nε log(1/ε)). Again, this implies
that

∑
i∈Ib ti = O(nε log(1/ε)). Together with∥∥∑

i∈Ib tiai +
∑
i∈Is tiai

∥∥
2

= O(
√
nε log(1/ε)) from

(b), we get that
∥∥∑

i∈Is tiai
∥∥

2
= O(nε log(1/ε)), as re-

quired.

Let v =
(∑

i∈Is
ti
‖gi‖2 gi

)
/
(∑

i∈Is
ti
‖gi‖2

)
. Since 1 ∈ Is,

we have we
∑
i∈Is

ti
‖gi‖2 ≥

1
Lf,2
≥ 1

Lf
. Hence, it follows

that

‖v‖1 ≤
√
n‖v‖2 ≤ Lf

√
n

∥∥∥∥∥∑
i∈Is

tiai

∥∥∥∥∥
2

= O(Lfn
3/2ε log(1/ε)) ≤ 2δLf .

Then, Lemma 5.1 is applicable to provide the certificate
for Approx-SFM(f, δ). Note that the set W with
f(W) = −µ has been maintained during the cutting
plane algorithm.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited846

D
ow

nl
oa

de
d

08
/1

7/
18

 to
 1

58
.1

43
.7

4.
20

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Combining with Theorem 4.3, the total complexity
of the oracle calls is O((n3 · EO + n4) log(nLf,2)).
However, the total time for recomputing the extreme
bases as in line 5 in Algorithm 3 would consume time
O(n4 ·EO+n5), since k = O(n). To decrease this term
by a factor n, we can adapt the same trick as in the
proof of Lemma 79 in [27]. At the expense of selecting
δ to be smaller by a factor n, it suffices to recompute
only one of the gi’s, instead of the entire combination.

Comparison to the Lee-Sidford-Wong SFM
algorithm Let us now compare our approach to the
SFM algorithm described in [27, Part III]. We employ
the same cutting plane method, and a common frame-
work is using ring families; our bucketing argument has
been adapted from [27].

Their combinatorial framework is more complex
than ours: upper bounds analogous to the lower bounds
`(z) are needed, and accordingly, their algorithm identi-
fies both outgoing and incoming arcs, as well as removes
elements which cannot be contained in any minimizer.
The simple trick that enables us to work only with lower
bounds, and identify only incoming arcs is repeatedly
truncating the value of f(V); thus, we can bound Lf↓

in terms of `−(V), as in Claim 4.2.
Our black-box approach clearly separates the com-

binatorial argument from the cutting plane method,
which is used only inside the oracle. In contrast, these
two ingredients cannot be clearly separated in [27].
They use the cutting plane method for the formula-
tion using the Lovász extension, and they transform
the cutting plane certificate to identify a small norm
convex combination in the base polytope. This is anal-
ogous to, but substantially more complicated than, our
Lemma 6.1. In particular, it is not always possible to
identify such a combination, since the constraints of the
feasible region can have large coefficients. In such cases,
these large coefficients can be used to fix some of the
variables to 0 and 1, and hence make progress in terms
of the ring family. In contrast, the certificate from our
sliding cutting plane algorithm on Fµ can be straightfor-
wardly translated in Lemma 6.1 to satisfy the require-
ments of the approximate oracle.

References

[1] F. Bach, Learning with submodular functions: A con-
vex optimization perspective, Foundations and Trends
in Machine Learning, 6 (2013), pp. 145–373.

[2] A. Belloni, R. M. Freund, and S. Vempala, An
efficient rescaled perceptron algorithm for conic sys-
tems, Mathematics of Operations Research, 34 (2009),
pp. 621–641.

[3] U. Betke, Relaxation, new combinatorial and polyno-
mial algorithms for the linear feasibility problem, Dis-

crete & Computational Geometry, 32 (2004), pp. 317–
338.

[4] R. G. Bland, D. Goldfarb, and M. J. Todd, The
ellipsoid method: A survey, Operations research, 29
(1981), pp. 1039–1091.

[5] D. Chakrabarty, P. Jain, and P. Kothari, Prov-
able submodular minimization using Wolfe’s algorithm,
in Advances in Neural Information Processing Systems
(NIPS), 2014, pp. 802–809.

[6] D. Chakrabarty, Y. T. Lee, A. Sidford, and
S. C.-w. Wong, Subquadratic submodular function
minimization, in ACM Symposium on Theory of Com-
puting (STOC), 2017, pp. 1220–1231.

[7] S. Chubanov, A polynomial algorithm for
linear feasibility problems given by sepa-
ration oracles. http://www.optimization-
online.org/DB HTML/2017/01/5838.html, 2017.

[8] D. Dadush, L. A. Végh, and G. Zambelli, Rescal-
ing algorithms for linear programming. Part I: Conic
feasibility, arXiv preprint arXiv:1611.06427, (2016).

[9] , Geometric rescaling algorithms for sub-
modular function minimization, arXiv preprint
arXiv:1707.05065, (2017).

[10] G. B. Dantzig, Converting a converging algorithm
into a polynomially bounded algorithm, tech. rep., Stan-
ford University, 1991.

[11] J. Dunagan and S. Vempala, A simple polynomial-
time rescaling algorithm for solving linear programs,
Mathematical Programming, 114 (2008), pp. 101–114.

[12] J. Edmonds, Submodular functions, matroids, and
certain polyhedra, Edited by G. Goos, J. Hartmanis,
and J. van Leeuwen, 11 (1970).

[13] A. R. Ene and H. L. Nguyen, Random coordinate
descent methods for minimizing decomposable submod-
ular functions, in Proceedings of the 32nd International
Conference on Machine Learning (ICML), 2015.

[14] A. R. Ene, H. L. Nguyen, and L. A. Végh, De-
composable submodular function minimization: Dis-
crete and continuous, arXiv preprint arXiv:1703.01830,
(2017).

[15] S. Fujishige, Lexicographically optimal base of a poly-
matroid with respect to a weight vector, Mathematics
of Operations Research, 5 (1980), pp. 186–196.

[16] , Submodular functions and optimization, vol. 58,
Elsevier, 2005.

[17] S. Fujishige, A note on submodular func-
tion minimization by Chubanov’s LP algorithm.
http://www.optimization-online.org/DB HTML/
2017/09/6217.html, 2017.

[18] S. Fujishige and S. Isotani, A submodular function
minimization algorithm based on the minimum-norm
base, Pacific Journal of Optimization, 7 (2011), pp. 3–
17.

[19] M. Grötschel, L. Lovász, and A. Schrijver,
Geometric algorithms and combinatorial optimization,
vol. 2, Springer Science & Business Media, 2012.

[20] E. Hazan and S. Kale, Online submodular minimiza-
tion, Journal of Machine Learning Research, 13 (2012),

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited847

D
ow

nl
oa

de
d

08
/1

7/
18

 to
 1

58
.1

43
.7

4.
20

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

pp. 2903–2922.
[21] R. Hoberg and T. Rothvoß, An improved de-

terministic rescaling for linear programming algo-
rithms, in International Conference on Integer Pro-
gramming and Combinatorial Optimization (IPCO),
2017, pp. 267–278.

[22] S. Iwata, A faster scaling algorithm for minimizing
submodular functions, SIAM Journal on Computing,
32 (2003), pp. 833–840.

[23] S. Iwata, L. Fleischer, and S. Fujishige, A combi-
natorial strongly polynomial algorithm for minimizing
submodular functions, Journal of the ACM (JACM),
48 (2001), pp. 761–777.

[24] S. Iwata and J. B. Orlin, A simple combinatorial al-
gorithm for submodular function minimization, in Pro-
ceedings of the twentieth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), 2009, pp. 1230–
1237.

[25] S. Jegelka and J. A. Bilmes, Online submodular
minimization for combinatorial structures, in Proceed-
ings of the 28th International Conference on Machine
Learning (ICML11), 2011, pp. 345–352.

[26] S. Jegelka, H. Lin, and J. A. Bilmes, On fast
approximate submodular minimization, in Advances in
Neural Information Processing Systems (NIPS), 2011,
pp. 460–468.

[27] Y. T. Lee, A. Sidford, and S. C.-w. Wong, A
faster cutting plane method and its implications for
combinatorial and convex optimization, in Foundations
of Computer Science (FOCS), 2015, pp. 1049–1065.

[28] J. B. Orlin, A faster strongly polynomial time algo-
rithm for submodular function minimization, Mathe-
matical Programming, 118 (2009), pp. 237–251.

[29] J. Peña and N. Soheili, A deterministic rescaled
perceptron algorithm, Mathematical Programming, 155
(2016), pp. 497–510.

[30] A. Schrijver, A combinatorial algorithm minimiz-
ing submodular functions in strongly polynomial time,
Journal of Combinatorial Theory, Series B, 80 (2000),
pp. 346–355.

[31] A. Schrijver, Combinatorial optimization - Polyhedra
and Efficiency, Springer, 2003.

[32] P. Stobbe and A. Krause, Efficient minimization
of decomposable submodular functions, in Advances in
Neural Information Processing Systems (NIPS), 2010.

[33] É. Tardos, A strongly polynomial minimum cost cir-
culation algorithm, Combinatorica, 5 (1985), pp. 247–
255.

[34] P. Wolfe, Finding the nearest point in a polytope,
Mathematical Programming, 11 (1976), pp. 128–149.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited848

D
ow

nl
oa

de
d

08
/1

7/
18

 to
 1

58
.1

43
.7

4.
20

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

	Introduction
	Preliminaries
	Iterative methods for SFM

	Weakly polynomial algorithm via rescaling
	The sliding von Neumann algorithm
	Geometric rescaling algorithm for SFM
	Analysis

	Strongly polynomial algorithms
	Ring families
	The basic strongly polynomial scheme
	Speeding up the algorithm

	The pull-back technique for Rescaling-SFM
	Cutting plane method

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 14.4000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 17
 16
 17

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 9.00 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 9.0000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 17
 0
 1

 1

 HistoryList_V1
 qi2base

