
Revisiting Tardos’s Framework for Linear Programming:
Faster Exact Solutions using Approximate Solvers

Daniel Dadush

Networks & Optimization Group
Centrum Wiskunde & Informatica

Amsterdam, The Netherlands
dadush@cwi.nl

Bento Natura, László A. Végh

Department of Mathematics
London School of Economics and Political Science

London, United Kingdom
{b.natura, l.vegh}@lse.ac.uk

Abstract—In breakthrough work, Tardos (Oper. Res. ’86)
gave a proximity based framework for solving linear program-
ming (LP) in time depending only on the constraint matrix in
the bit complexity model. In Tardos’s framework, one reduces
solving the LP min〈c, x〉, Ax = b, x ≥ 0, A ∈ Z

m×n, to solving
O(nm) LPs in A having small integer coefficient objectives and
right-hand sides using any exact LP algorithm. This gives rise
to an LP algorithm in time poly(n,m logΔA), where ΔA is
the largest subdeterminant of A. A significant extension to the
real model of computation was given by Vavasis and Ye (Math.
Prog. ’96), giving a specialized interior point method that runs
in time poly(n,m, log χ̄A), depending on Stewart’s χ̄A, a well-
studied condition number.

In this work, we extend Tardos’s original framework to
obtain such a running time dependence. In particular, we
replace the exact LP solves with approximate ones, enabling us
to directly leverage the tremendous recent algorithmic progress
for approximate linear programming. More precisely, we show
that the fundamental “accuracy” needed to exactly solve any
LP in A is inverse polynomial in n and log χ̄A. Plugging
in the recent algorithm of van den Brand (SODA ’20), our
method computes an optimal primal and dual solution using
O(mnω+1+o(1) log(χ̄A+n)) arithmetic operations, outperform-
ing the specialized interior point method of Vavasis and Ye
and its recent improvement by Dadush et al (STOC ’20). By
applying the preprocessing algorithm of the latter paper, the
dependence can also be reduced from χ̄A to χ̄∗

A, the minimum
value of χ̄AD attainable via column rescalings. Our framework
is applicable to achieve the poly(n,m, log χ̄∗

A) bound using
essentially any weakly polynomial LP algorithm, such as the
ellipsoid method.

At a technical level, our framework combines together
approximate LP solutions to compute exact ones, making use
of constructive proximity theorems—which bound the distance
between solutions of “nearby” LPs—to keep the required
accuracy low.

Keywords-linear programming, strongly polynomial algo-
rithms, condition numbers, proximity, circuits

I. INTRODUCTION

In this paper, we consider the task of computing exact pri-

mal and dual solutions for linear programs (LP) in standard

Full version available at https://arxiv.org/abs/2009.04942. This project
has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme
(grant agreements ScaleOpt–757481 and QIP–805241).

form:
min 〈c, x〉
Ax = b

x ≥ 0 ,

max 〈y, b〉
A�y + s = c

s ≥ 0 .

(LP)

Here, A ∈ R
m×n, rank(A) = m ≤ n, b ∈ R

m, c ∈ R
n are

given in the input, and x, s ∈ R
n, y ∈ R

m are the variables.

We consider the program in x to be the primal problem and

the program in y, s to be the dual problem.

After the work of Khachiyan [1], who gave the first

polynomial algorithm for LP using the ellipsoid method,

Megiddo [2] asked whether there exists a “genuinely polyno-

mial”, now known as strongly polynomial, algorithm for LP.

Informally, the goal is to find an algorithm that uses poly(n)
basic arithmetic operations (e.g. addition, multiplication,

etc.), where each such operation must be performed on

numbers of size polynomial in the instance encoding length.

While no such algorithm is known, the search for a strongly

polynomial LP algorithm has spurred tremendous algorith-

mic advances for many classical combinatorial problems.

Strongly polynomial algorithms have indeed been found

for important combinatorial classes of linear programs. Ex-

amples include feasibility for two variable per inequality

systems [2], minimum-cost circulations [3]–[5], generalized

flow maximization, [6], [7], and discounted Markov Deci-

sion Processes [8], [9].

To generalize these results to larger problem classes, a

natural attempt is to seek abstract frameworks that capture

known algorithms. In this vein, a recurring principle in

strongly polynomial algorithm design is that “good enough”

approximate solutions can be used to glean combinatorial

information about exact optimal ones. Such information

is used to reduce the underlying instance in a way that

preserves all optimal solutions.

This was in fact the key idea in Tardos’s seminal paper on

minimum-cost circulations [5]: solving a problem instance

with a suitable rounded cost function reveals an arc that

cannot be tight in any dual optimal solution; consequently,

we can fix the flow value to 0. As another example, in

submodular function minimization any sufficiently small

931

2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/20/$31.00 ©2020 IEEE
DOI 10.1109/FOCS46700.2020.00091

20
20

 IE
EE

 6
1s

t A
nn

ua
l S

ym
po

siu
m

 o
n

Fo
un

da
tio

ns
 o

f C
om

pu
te

r S
ci

en
ce

 (F
O

CS
) |

 9
78

-1
-7

28
1-

96
21

-3
/2

0/
$3

1.
00

 ©
20

20
 IE

EE
 |

 D
O

I:
10

.1
10

9/
FO

CS
46

70
0.

20
20

.0
00

91

Authorized licensed use limited to: London School of Economics & Political Science. Downloaded on July 16,2021 at 18:04:21 UTC from IEEE Xplore. Restrictions apply.

norm point in the base polytope can be used to infer relations

in a ring-family containing all minimizers [10], [11].

At a higher level, it can be useful to view strongly

polynomial algorithms as reductions from an exact op-

timization problem to a suitable approximate version of

itself. To achieve fast strongly polynomial algorithms using

these principles, important considerations are the complexity

of the individual approximate solves, e.g., the degree of

accuracy required, and the total required number of them.

Tardos’s Framework for Linear Programming: Gener-

alizing the above idea from minimum-cost flows to general

linear programming, Tardos [12] provided such a framework

for solving any standard form primal-dual LP with integer

constraint matrix A ∈ Z
m×n using a number of operations

depending only on n and the logarithm of ΔA, the maximum

absolute value of the determinant of any square submatrix

of A. This algorithm is strongly polynomial for minimum-

cost flow, noting that digraph incidence matrices are totally

unimodular, and therefore ΔA = 1. At a high level, Tardos’s

framework reduces getting exact LP solutions to getting

exact solutions for “nearby LPs” with simpler coefficient

structure, heavily relying on LP proximity theorems (e.g.,

see [13], [14]). More precisely, Tardos reduces computing

exact primal-dual solutions to max 〈c, x〉, Ax = b, x ≥ 0 to

computing exact primal-dual solutions to O(nm) LPs in A
with “rounded” objectives c′ and right hand sides b′ having

integer coefficients of size O(n2ΔA). In particular, after

O(n) such LP solves, one can determine a coefficient xi

in the support of some optimal solution, allowing to delete

the xi ≥ 0 constraint. Due to their small coefficients, the LPs

in the reduction can be solved using any weakly polynomial

algorithm. We note that the fundamental property enabling

the polynomial solvability of these rounded LPs is that

the minimum non-zero slack of their basic solutions, i.e.,

min{xi : xi > 0}, is lower bounded by 1/(nO(1)Δ) by

Cramer’s rule.

Achieving χ̄A dependence: While Tardos’s framework

is powerful, it inherently relies on the determinant bound

ΔA. This is only applicable for integer constraint matrices;

one can obtain bounds for rational constraint matrices via

multiplying by the least common denominator of the entries,

but this leads to weak bounds that are highly volatile under

small changes in the entries. A significant strengthening

of [12] was given by Vavasis and Ye [15]. They gave an

interior point method (IPM) in the real model of com-

putation based on layered least squares (LLS) steps that

outputs exact primal-dual solutions in O(n3.5 log(χ̄A + n))
iterations. Improved iteration bounds were later given for

certain special cases, in particular, O(
√
n log(χ̄A + n)) for

homogeneous conic feasibility [16] and O(n2.5 log(χ̄A+n))
for LP feasibility [17]. In a conceptual advance, Vavasis and

Ye’s result showed that the polynomial solvability of LP does

not require any minimum non-zero slack assumption.

The condition measure replacing ΔA is Stewart’s χ̄A [18],

which for integer matrices satisfies χ̄A ≤ nΔA. In contrast

with ΔA that relies on the entry numerics, χ̄A is a geometric

measure that depends only on the kernel of A; Formally,

letting W := ker(A) and πI(W) = {xI : x ∈W}, one may

define χ̄A := χ̄W as the minimum number M ≥ 1 such that

for any ∅ 	= I ⊆ [n] and z ∈ πI(W), there exists y ∈ W
with yI = z and ‖y‖≤ M‖z‖. In words, it represents the

cost of lifting partial fixings of coordinates into the subspace

W .

Very recently, the authors and Huiberts [19], building on

the work of Monteiro and Tsuchiya [20], [21], gave an

improved LLS optimization algorithm and analysis requiring

only O(n2.5 log n log(χ̄∗A + n)) iterations, where χ̄∗A is the

minimum χ̄AD over positive diagonal matrices D > 0. The

paper [19] further gave a nearly optimal rescaling algorithm

which runs in O(m2n2 + n3) time and computes D > 0
satisfying χ̄AD ≤ n(χ̄∗A)

3. Thus, by suitable preprocessing,

any algorithm achieving χ̄A dependence can be converted

into one with χ̄∗A dependence.

A key tool in [19] is to study the ‘circuit imbalance

measure’ κA. This closely approximates χ̄A, with log(χ̄A+
n) = Θ(log(κA+n)), and has very favourable combinatorial

properties. Our approach also relies on κA and κ∗A, even

though we state the results in terms of the better known χ̄A

and χ̄∗A.

The condition number χ̄∗A can be smaller than χ̄A by an

arbitrary factor, and in turn, χ̄A can be much smaller ΔA

even for integer matrices A. Let A ∈ R
n×m be the node-

edge incidence matrix of an undirected graph on n nodes

and m edges. If the graph has k node-disjoint odd cycles,

then ΔA ≥ 2k. However, it is easy to verify that for any

graph, κA ≤ 2 (see the definition of κA in Section II-A).

Using Proposition II.4, we get the bound χ̄A ≤ 2m.

Harnessing the progress in approximate solvers: The

complexity of fast approximate LP algorithms has seen sub-

stantial improvements in recent years [22]–[27]. Taking the

recent algorithm [24], given a feasible LP min 〈c, x〉, Ax =
b, x ≥ 0, having an optimal solution of �2 norm at most R,

for ε > 0 it computes a point x̃ ≥ 0 satisfying

〈c, x̃〉 ≤ min
Ax=b,x≥0

〈c, x〉+ ε · ‖c‖2·R
‖Ax̃− b‖2 ≤ ε · (‖A‖F ·R+ ‖b‖2),

(APX-LP)

in deterministic time O(nω+o(1) log(n/ε)), where ω < 2.38
is the matrix multiplication exponent.

Tardos’s framework requires an exact black box solver for

systems with the same matrix A but replacing b and c by

small integer vectors. It is possible to use the approximate

solver (APX-LP) to obtain exact optimal solution for integer

matrices for sufficiently small ε. Assume A ∈ Z
m×n,

b ∈ Z
m, c ∈ Z

n and ‖b‖∞, ‖c‖∞≤ nO(1)Δt, and let

OPT denote the optimum value of (LP). We may call (LP)

in a suitable extended system with ε = 1/
(
nO(1)Δ

O(t)
A

)
,

and use a Carathéodory reduction to identify primal and

932

Authorized licensed use limited to: London School of Economics & Political Science. Downloaded on July 16,2021 at 18:04:21 UTC from IEEE Xplore. Restrictions apply.

dual optimal basic solutions. Integrality is used in multiple

parts of such a reduction: e.g., for establishing a bound

R = nO(1)Δ
O(t)
A from Cramer’s rule, and for showing that

for any primal feasible solution x, 〈c, x〉 < OPT implies

〈c, x〉 < OPT−ε‖c‖2R. For a matrix A ∈ R
m×n, we cannot

obtain an exact solver by applying the approximate solver

for high enough accuracy in terms of the condition numbers

χ̄A or κA. This is the main reason why we cannot work

with explicitly rounded systems, but require a more flexible

approach. Let us also note that recovering an exact solution

from the approximate solver comes at a high arithmetic cost

that we can save if using the approximate solution directly.

Fast algorithms with χ̄A dependence: The layered least

squares interior point methods discussed above represent

substantial advances in the strongly polynomial solvability

of LP, yet it is highly non-obvious how to combine these

techniques with those of recent fast LP solvers. For example,

for the results of [22], [25], one would have to develop ana-

logues of LLS steps for weighted versions of the logarithmic

barrier. Furthermore, the proofs of exact convergence are

intricate and deeply tied to the properties of the central path,

and may leave one wondering whether the χ̄A solvability of

LP is due to “IPM magic”. It would therefore be desirable

to have an elementary proof of the χ̄A solvability of LP.

Partial progress on this question was given by Tunçel

and Ho [28], who generalized Tardos’s framework in the

real number model. Firstly, they showed that one can still

round instances to have minimum non-zero slack τA > 0,

depending only on A. Second, they showed that applying

the Mizuno-Todd-Ye [29] predictor-corrector IPM on the

homogeneous self-dual formulation, these rounded instances

can be solved poly(n, log τA, log(ΔA/δA)) time, where δA
is the absolute value of the minimum non-zero determinant

of any square submatrix of A. Here, they prove the relation

χ̄A ≤ nΔA/δA and note that ΔA/δA can be arbitrarily

larger than χ̄A. Lastly, they provide a different algorithm that

removes the dependence on τA, assuming one has access to

the Vavasis-Ye algorithm as a subroutine only on instances

with b ∈ {±1, 0}m , c ∈ {0,±1}n.

A. Our Contributions

As our main contribution, we provide a substantially

improved Tardos style framework for LP which achieves

both χ̄A dependence and relies only on approximate LP

solves: we use the output (APX-LP) of the approximate LP

solvers in a black-box manner. Our main result using the

deterministic solver in [24] is summarized below. The more

precise technical statements generalized to non-deterministic

solvers are given as Theorem V.3 for feasibility and Theo-

rem VI.2 for optimization.

Theorem I.1 (Enhanced Tardos Framework for Feasibility).
Assume we are given a feasibility LP Ax = b, x ≥ 0 with
data A ∈ R

m×n, rank(A) = m, and b ∈ R
m.

(i) If the primal program is feasible, then one can
find a feasible solution x using O(m) approxi-
mate LP solves (APX-LP) with accuracy ε =
1/(nχ̄A)

O(1) together with additional O(mnω+o(1))
arithmetic operations. This gives a total complexity
O(mnω+o(1) log(χ̄A + n)) using the solver of van den
Brand [24].

(ii) If the primal program is infeasible, then a Farkas
certificate of infeasibility y ∈ R

m, satisfying A�y ≥ 0,
〈b, y〉 < 0 can be found using the amount of computa-
tion as in (i), and O(nm2 +nω+o(1)) log log(χ̄A +n))
additional arithmetic operations.

Next, we state our result for optimization:

Theorem I.2 (Enhanced Tardos Framework for Optimiza-

tion). Assume we are given primal-dual (LP) with data
A ∈ R

m×n, rank(A) = m, b ∈ R
m, c ∈ R

n.
(i) If both primal and dual programs are feasible,

then one can obtain an optimal primal-dual pair
(x, y, s) of solutions, using at most O(nm) approx-
imate LP solves (APX-LP) as in Theorem I.1(i),
together with an additional O(mnω+1+o(1)) arith-
metic operations. This gives a total complexity
O(mnω+1+o(1) log2(n) log(χ̄A + n)) using [24].

(ii) If either of the primal or dual programs are infeasible,
then we can obtain a Farkas certificate of primal or
dual infeasibility in the same running time as in (i),
plus O(n3m2 log log(χ̄A + n)) additional arithmetic
operations.

This theorem yields the first LP algorithm achieving χ̄A

dependence that is not based of the analysis of the central

path. At a high level, we achieve this by more deeply

exploiting the power of LP proximity theorems, which are

already at the core of Tardos’s framework. In the rest of this

section, we explain some of the key ideas behind the above

theorem and how it compares to Tardos’s original algorithm

as well as that of Vavasis and Ye.
Overview of the approach: Both Tardos’s and our

approach use variants of Hoffman’s proximity bounds, see

Section III. The fundamental difference is that while Tardos

uses an exact solver where the perturbed objective and right

hand side vectors are fixed in advance before calling the

solver, we decide these perturbations “on the fly” as a

function of the returned approximate solutions we receive.
Let us illustrate Tardos’s and our approaches on the dual

feasibility LP

A�y + s = c, s ≥ 0 . (D)

The feasibility algorithm in [5] proceeds as follows. Define

b̃i =
∑n

i=1(ΔA+1)i−1ai, where ai is the i-th column vector

of A, and consider the primal system

min 〈c, x〉 s.t. Ax = b̃ , x ≥ 0 . (P̃)

Note that by the choice of b̃, this system is always feasible.

933

Authorized licensed use limited to: London School of Economics & Political Science. Downloaded on July 16,2021 at 18:04:21 UTC from IEEE Xplore. Restrictions apply.

If it is unbounded, then we may conclude infeasibility

of (D). The reason for the particular choice of b̃ is that

whenever the system is bounded, the dual of (P̃) has a

unique optimal solution; this can be shown by a determinant

argument. Consequently, for any optimal solution x∗ to (P̃)

and S∗ = supp(x∗), the system a�i y = ci, i ∈ S∗ yields a

feasible solution to (D). The exact LP solver will be applied

to a series of rounded problem instances of the form

min 〈c̃, x〉 s.t. Ax = b̃ , x ≥ 0 , xT = 0 , (P̂)

where c̃ ∈ Z
n, ‖c̃‖∞≤ n2ΔA, and T ⊆ [n] is a set of

indices i where we have already concluded that x∗i = 0 in

every optimal solution to (P̃). This is initialized as T = ∅,
and every call to the LP solver enables the addition of at

least one new index; thus, we need O(n) oracle calls to

solve feasiblity. According to the definition of b̃, this is an

integer vector with ‖b̃‖= Θ(
√
mΔn

A). As explained above,

we can obtain an exact solution to (P̂) by calling (APX-LP)

for accuracy ε = 1/
(
nO(1)Δ̃

O(n)
A

)
.

To conclude that i ∈ T for some i ∈ [n], Tardos uses

a proximity theorem that is a variant of Lemma III.4. It

implies that if ‖c̃ − c‖∞ is “small”, then (P̃) has a dual

optimal solution that is “close” to the dual optimal solution

obtained for (P̂).

In contrast, our approach in Section V proceeds as fol-

lows. If c ≥ 0, we simply return s = c. Otherwise, the norm

of the negative coordinates ‖c−‖1 will play a key role. We

can strengthen (D) by adding the constraint

‖s− c‖∞≤ 16κ2
An‖c−‖1 , (1)

where κA is the circuit imbalance measure; for integer

matrices κA ≤ ΔA. A proximity result (Corollary III.2)

implies that whenever (D) is feasible, there is a feasible

solution also satisfying (1).

We can use (APX-LP) directly to obtain a solution (ỹ, s̃)
such that A�ỹ + s̃ = c, ‖s̃ − c‖∞≤ 3κ2

An‖c−‖1, and

‖s̃−‖∞≤ ε‖c−‖1 for ε = 1/O(n4κ4
A). Again, note that in

addition to approximate feasiblity, we also require proximity

of s to c; we can obtain such a solution with this extra

property without an increase in the running time cost.

From here, we can identify a set K of coordinates such

that s̃i is large enough to conclude that there exists a feasible

solution s to (D) with s̃i > 0 for i ∈ K; this is done

similarly as in Tardos’s approach.

We project out all variables in K, meaning that we remove

the inequalities a�i y+si = ci for i ∈ K from the system. We

recurse on the smaller subsystem. From the recursive call,

we obtain a feasible solution y′ to (D) in the smaller system

that also satisfies (1). The proximity constraints enables us

to easily map back y′ to a feasible solution y to (D) by a

simple ‘pullback’ operation.

As noted above, the very existence of an exact LP oracle

heavily relies on the integrality assumption of A. This

integrality is also used to establish the relation between

the optimal solutions of (P̃) and the solutions of (D),

using a determinant argument. In contrast, the proximity

arguments as in Lemma III.4 and Corollary III.2 do not rely

on integrality; we can use here κA instead of ΔA.

Even for integer matrices and κA = Θ(ΔA), and using

the same solver for (APX-LP), our algorithm is faster by

a factor Ω(n2/m). A key ingredient in the running time

improvement is to strengthen the system with (1). This

allows us to use ε = 1/(nO(1)κ
O(1)
A); otherwise, we would

need to require a higher precision ε = 1/(nO(1)κ
O(n)
A). This

yields a factor n improvement over [5].

Another factor n/m improvement is obtained as follows.

In the approach sketched above, if the set of “large” coor-

dinates K is nonempty, we get a bound n on the number of

recursive calls. Using a slightly more careful recursive setup,

we can decrease the rank of the system at each iteration,

improving this bound to m.

Let us now turn to optimization. Our algorithm will be

more similar to the one in [5], and for integer matrices with

κA = Θ(ΔA) and m = Ω(n), the asymptotic running time

bounds will be the same.

We now outline Tardos’s approach. Given an optimization

problem (LP), we first check for both primal and dual

feasibility. If these are both feasible, then we go through

≤ m main loops. In each main loop, we use the same

approach as above to solve (P̃) with a perturbed b̃ ∈ Z
m

with ‖b̃‖∞≤ n2ΔA. Using ≤ n oracle calls, we obtain

optimal primal and dual solutions (x, y, s). Again, proximity

guarantees that if b̃ is “close” to b, then we can identify

an index i with a “large” xi > 0 where we can conclude

s∗i = 0 in every optimal solution. Equivalently, xi is in the

support of some optimal solution, and hence we may delete

the constraint xi ≥ 0, and proceed to the next main loop

after projecting out the variable xi. We note that the bound

n on the inner loops is in reality n − m, and this can be

improved to m by swapping the primal and dual sides.

In our approach in Section VI, the goal is to end up in the

same place as Tardos at the end of the main loop, where the

difference will be how we get there. As mentioned above,

in Tardos’s setting, one already knows beforehand that the

final objective and right hand side for which one will have

optimal primal-dual solutions will be b̃, a rounded version of

b, and the original c. However, the only important property

is that at the end of the loop we end up with a primal-dual

optimal pair for the original objective c, and some right hand

side b′ close enough to the original b. In particular, b′ need

not be known at the beginning of the algorithm and can

thus be chosen adaptively depending on the outcome of the

approximate LP solves.

For the above purpose, we utilize proximity theorems

(see Section III for precise statements) to allow us to

934

Authorized licensed use limited to: London School of Economics & Political Science. Downloaded on July 16,2021 at 18:04:21 UTC from IEEE Xplore. Restrictions apply.

stitch together the “large” coordinates of approximate dual

solutions to achieve feasibility. At the same time, we perform

a similar complementary stitching of primal approximate

solutions, where we judiciously perturb “small” coordinates

to 0, inducing a corresponding change of right hand side,

to enforce complementarity with the dual solution. Here

proximity allows us to control how much the solutions will

change in future iterations, which is crucial to not destroying

the structure of the solutions built so far.

We also note that Grötschel, Lovász, and Schrijver [30,

Theorem 6.6.3] give a different proof for Tardos’s result

using simultaneous Diophantine approximation (see also

[31]). This shows that (LP) can be solved by creating a

single perturbed instance with integer b̃ and c̃ bounded in

terms of the encoding length of A such that the set of optimal

bases coincide in the two systems. The perturbed instance

can be solved in poly(n,m, logΔA); we simply take an

optimal basis and compute the corresponding primal and

dual optimal solutions for the original b and c. However,

this reduction inherently relies on integrality arguments.

Failure will be certified: Our algorithm requires an

estimate on the circuit imbalance parameter κA (see def-

inition in Section II-A). This is a common assumption

shared by most previous literature: Tardos’s algorithm uses

an estimate of ΔA; Vavasis and Ye require a bound on χ̄A.

These parameters are hard to compute [32], [33]. However,

knowing these values are not required, and we can use

the following simple guessing procedure, attributed to J.

Renegar in [15]. We start with a low guess on χ̄A (or

some other parameter), say M = 100. If the algorithm fails

to return the required solution, then we conclude that the

estimate was too low, and replace the guess M by M2.

Thus, we can still obtain a dependence on log(χ̄A + n),
without knowing the value.

A new aspect of our algorithm is that in case of a

failure, we do not simply conclude that our estimate was

too low indirectly from the failure of the algorithm, but we

also obtain an explicit certificate. Namely, an elementary

operation is to compute lifts mentioned previously: for

the subset W = ker(A), an index set I ⊆ [n], and a

vector y ∈ πI(W), we compute the minimum-norm vector

z ∈ W such that zI = y. Our parameter κA satisfies

‖z‖∞≤ κA‖y‖1 (Proposition II.3). Whenever our algorithm

fails due to underestimating M < κA, this will be certified

by an index set I ⊆ [n] and a vector y ∈ πI(W), and lift z
with ‖z‖∞> M‖y‖1.

II. PRELIMINARIES

For vectors v, w ∈ R
n we denote by min{v, w} the vector

z ∈ R
n with zi = min{vi, wi}, i ∈ [n]; analogously for

max{v, w}. Further, we use the notation v+ = max{v, 0n}
and v− = max{−v, 0n} .

For a vector v ∈ R
n, we denote by diag(v) the diagonal

matrix whose i-th diagonal entry is vi. For two vectors

x, y ∈ R
n, we let 〈x, y〉 = x�y denote their scalar product.

We denote by the binary operation ◦ the element-wise

multiplication x ◦ y = diag(x)y. We let D denote the set of

all positive definite n× n diagonal matrices.

For an index subset I ⊆ [n], we use πI : Rn → R
I for

the coordinate projection. That is, πI(x) = xI , and for a

subset S ⊆ R
n, πI(S) = {xI : x ∈ S}. We let Rn

I = {x ∈
R

n : x[n]\I = 0}.
For a subspace W ⊆ R

n, we let WI = πI(W ∩Rn
I). It is

easy to see that πI(W)⊥ = (W⊥)I . Assume we are given

a matrix A ∈ R
m×n such that W = ker(A). Then, WI =

ker(AI), and we can obtain a matrix A′ from A such that

πI(W) = ker(A′) by performing a Gaussian elimination of

the variables in [n] \ I .

For a subspace W ⊆ R
n and a vector d ∈ R

n we define

by d/W the orthogonal projection of d onto W⊥, that is

d/W = πW⊥(d). In particular, d/W is the minimum-norm

vector in W + d. Further, for a subspace W ⊆ R
n, we let

W+ = W ∩ R
n
+.

Linear programming in subspace formulation: Let A ∈
R

m×n, and W = ker(A) ⊆ R
n. For c, d ∈ R

n, we can write

(LP) in the following equivalent form, where d ∈ R
n such

that Ad = b. Define the system Primal-Dual(W,d, c):

min 〈c, x〉
x ∈W + d

x ≥ 0 ,

max 〈d, c− s〉
s ∈W⊥ + c

s ≥ 0 .

Note that (x, s) are optimal primal and dual solutions if

and only if they are feasible and 〈x, s〉 = 0. Thus, Primal-
Dual(W,d, c) is equivalent to the following feasibility prob-

lem:

x ∈W + d, s ∈W⊥ + c, 〈x, s〉 = 0, (x, s) ≥ 0. (2)

Circuits: For a linear subspace W ⊆ R
n and a matrix

A such that W = ker(A), a circuit is an inclusion-wise

minimal dependent set of columns of A. The set of circuits

of W is denoted CW .

For a subset I ⊆ [n], we let cl(I) denote its closure in the

matroidal sense. We will make the assumption that |C|> 1
for all C ∈ CW .

A. The condition numbers χ̄ and κ

For a matrix A ∈ R
m×n, the condition number χ̄A is

defined as

χ̄A = sup
{∥∥∥A� (

ADA�
)−1

AD
∥∥∥ : D ∈ D

}
. (3)

This quantity was first studied by Dikin [34], Stewart [18],

and Todd [35], and has been extensively studied in the

context of interior point methods; we refer the reader to

[15], [20], [28] for further results and references.

It is important to note that χ̄A only depends on the

subspace W = ker(A). Hence, we can also write χ̄W for a

subspace W ⊆ R
n, defined to be equal to χ̄A for some

935

Authorized licensed use limited to: London School of Economics & Political Science. Downloaded on July 16,2021 at 18:04:21 UTC from IEEE Xplore. Restrictions apply.

matrix A ∈ R
k×n with W = ker(A). We will use the

notations χ̄A and χ̄W interchangeably.

Let us define the lifting map LW
I : πI(W)→W by

LW
I (p) = argmin {‖z‖: zI = p, z ∈W} .

A useful characterization of χ̄W can be given in terms

of the operator norm of the lifting map. This was shown in

[19], by using results from [18] and [36].

Proposition II.1 ([19]). For a linear subspace W ⊆ R
n,

χ̄W = max
{‖LW

I ‖ : I ⊆ [n], I 	= ∅} .

The circuit imbalance measure: Consider now the

circuits CW of the subspace W . For a circuit C ∈ CW ,

let gC ∈ W be such that supp(gC) = C. Note that gC is

unique up to multiplication by scalar. We define the circuit
imbalance measure

κW = max

{
maxi∈C

∣∣gCi ∣∣
minj∈C

∣∣gCj ∣∣ : C ∈ CW
}

,

as the largest ratio between two entries of any minimum

support nonzero vector in W . This was studied in [19],

[28], [37]. Note that κW = 1 corresponds to totally

unimodular spaces. As shown in Proposition II.4 below,

the condition measures χ̄W and κW are closely related:

O(log(χ̄W + n)) = O(log(κW + n)) holds. However,

κW has several advantageous combinatorial properties. In

fact, the argument in the proof of Tardos’s main proximity

result using Cramer’s rule is implicitly bounding circuit

imbalances, see discussion of Lemma III.4. Therefore, we

will use κW instead of χ̄W throughout the paper.

We can give a characterization using max-norm instead

of �2-norm.

Proposition II.2. For every matrix A ∈ R
m×n with

rk(A) = m,

κA = max
{‖A−1

B A‖max: B basis
}
.

Proposition II.1 asserts that χ̄W is the maximum �2 → �2
operator norm of the mappings LW

I over I ⊆ [n]. We can

show that the maximum �1 → �∞ operator norm of these

mappings is κW , even though the lifting map is defined with

respect to �2 norms.

Proposition II.3. For a linear subspace W ⊆ R
n,

κW = max

{‖LW
I (p)‖∞
‖p‖1 : I ⊆ [n], I 	= ∅, p ∈ πI(W) \ {0}

}
.

Using Proposition II.3, we can easily relate the quantities

χ̄W and κW . The upper bound was already shown in [37];

the slightly weaker lower bound
√

χ̄2
W − 1/n ≤ κW was

given in [19].

Proposition II.4. For a linear subspace W ⊆ R
n,

1

n
χ̄W ≤ κW ≤

√
χ̄2
W − 1.

The estimate M and lifting certificates: The value

of κW and χ̄A may not be known. In fact, these are

hard to approximate even within a factor 2poly(m) [33].

Throughout our algorithms, we maintain a guess M on the

value of 2κW , initialized as M = 2. At certain points

in the algorithm, we may find an index set I ⊆ [n] and

a vector p ∈ πI(W) such that ‖LW
I (p)‖∞> M‖p‖1. In

this case, we conclude that M < κW by Proposition II.3.

Such a pair (I, p) is called a lifting certificate of M > κ.

We can then restart the algorithm with an updated estimate

M ′ = max{2‖LW
I (p)‖∞/‖p‖1,M2}.

Optimal rescalings: For every D ∈ D, we can consider

the condition numbers χ̄WD = χ̄AD−1 and κWD = κAD−1 .

We let
χ̄∗W = χ̄∗A = inf{χ̄WD : D ∈ D}
κ∗W = κ∗A = inf{κWD : D ∈ D}

denote the best possible values of χ̄ and κ that can be

attained by rescaling the coordinates of W . A near-optimal

rescaling can be found in strongly polynomial time [19].

As a consequence, after using this preprocessing step, any

algorithm that has running time dependence on log(κW +n)
is turned into an algorithm with dependence on log(κ∗W+n).
We note however that for small values of log(κW +n), this

preprocessing may turn out to be a bottleneck operation for

our feasibility algorithm.

III. PROXIMITY VIA HOFFMAN-BOUNDS

Hoffman’s seminal work [13] has analyzed proximity of

LP solutions. Given P = {x ∈ R
n : Ax ≤ b}, x0 ∈ R

n,

and norms ‖.‖α and ‖.‖β , we are interested in the minimum

of ‖x−x0‖α over x ∈ P . Hoffman showed that this can be

bounded as Hα,β(A)‖(Ax0 − b)+‖β , where the Lipschitz-

bound Hα,β(A) is a constant that only depends on A and the

norms. Such bounds have been shown for several different

problem forms and norms; we refer the reader to [38] for

results and references.

We will use a Hoffman-bound for a system of the form

x ∈ W , � ≤ x ≤ u. We show that H∞,1 = κW for such a

system. Related bounds using χ̄A have been shown in [28].

For vectors d, c ∈ R
n, let us define the set

Λ(d, c) := supp(d−) ∪ supp(c+) . (4)

Theorem III.1 (Hoffman Proximity Theorem). Let W ⊆
R

n be a subspace and � ∈ (R∪{−∞})n, u ∈ (R∪{∞})n
be lower and upper bounds, and assume that P = {x ∈
W : � ≤ x ≤ u} is non-empty. Then, for every x ∈ P we
have

‖�+ + u−‖1≤ ‖xΛ(u,�)‖1 ,

936

Authorized licensed use limited to: London School of Economics & Political Science. Downloaded on July 16,2021 at 18:04:21 UTC from IEEE Xplore. Restrictions apply.

and there exists x ∈ P such that

‖x‖∞≤ κW ‖�+ + u−‖1 .
We can derive useful corollaries for feasibility and opti-

mization problems.

Corollary III.2. Let W ⊆ R
n be a subspace and d ∈ R

n.
If the system x ∈W +d, x ≥ 0 is feasible, then the system

x ∈W + d, ‖x− d‖∞≤ κW ‖d−‖1, x ≥ 0,

is also feasible.

Corollary III.3. Let W ⊆ R
n be a subspace and c, d ∈ R

n,
and assume c ≥ 0. If Primal-Dual(W,d, c) is feasible, then
there is an optimal solution (x, s) such that

‖x− d‖∞≤ κW ‖dΛ(d,c)‖1 .
The next lemma will be used to conclude that a primal

variable s∗i = 0 in every solution (x∗, s∗) to Primal-
Dual(W,d, c). For integer matrices, a similar statement was

given by Cook et al. [14, Theorem 5], see also [39, Theorem

10.5] with a bound in terms of the maximum subdeterminant

ΔA. A variant of this statement is used by Tardos [5, Lemma

1.1] as the main underlying proximity statement of her

algorithm. Ho and Tunçel [28, Theorem 6.3] generalized this

bound to arbitrary matrices, using the condition number χ̄A.

This implies our statement with nκW instead of κW +1. We

note that the arguments in [5], [14] are based on Cramer’s

rule. In essence, this is used to bound the circuit imbalances

in terms of ΔA. Hence, our formulation with κW can be

seen as a natural extension.

Lemma III.4. Let W ⊆ R
n be a subspace and c, d, d̃ ∈ R

n.
Let (x̃, s) be an optimal solution to Primal-Dual(W, d̃, c).
Then there exists an optimal solution (x∗, s∗) to Primal-
Dual(W,d, c) such that

‖x∗ − x̃‖∞≤ (κW + 1)‖d− d̃‖1 .
We can immediately use this theorem to derive a con-

clusion on the support of the optimal dual solutions to

Primal-Dual(W,d, c), using the optimal solution to Primal-
Dual(W, d̃, c).

Corollary III.5. Let W ⊆ R
n be a subspace and

c, d, d̃ ∈ R
n. Let (x̃, s) be an optimal solution to Primal-

Dual(W, d̃, c). Let

R := {i ∈ [n] : x̃i > (κW + 1)‖d− d̃‖1} .
Then for every dual optimal solution s∗ to Primal-
Dual(W,d, c), we have s∗R = 0.

We now formulate a strengthening of this corollary. We

show that besides setting dual variables in R to 0, we are

also able to set certain primal variables to 0. This will be

the key to decrease the number of recursive calls from n to

m.

More precisely, we show the following. Assume x′ in the

previous proof contains a ‘large’ coordinate set IL, signif-

icantly larger than the threshold for R in Corollary III.5.

Assume that the closure cl(IL) contains some indices from

[n] \ R. Then, we can transform x′ in the proof to another

optimal solution x′′ where all these coordinates are set to

0. This can be achieved by changing the coordinates in IL
only, and their high value in x′′ guarantees that they remain

positive.

Theorem III.6. Let W ⊆ R
n be a subspace and

c, d, d̃ ∈ R
n. Let (x̃, s) be an optimal solution to Primal-

Dual(W, d̃, c), and let τ ≥ (κW + 1)‖d − d̃‖1 and T ≥
(2nκW + 1)τ . Let us define the following partition of [n]
into large, medium, and small indices.

IL = {i ∈ [n] : x̃i > T}, IM = {i ∈ [n] : T ≥ x̃i > τ},
and IS = [n] \ (IL ∪ IM). We further partition IS as

I0S = IS ∩ cl(IL) , I+S = IS \ cl(IL) .
Then, there exists a primal optimal solution x′′ to Primal-

Dual(W,d, c) such that x′′IL∪IM > 0, and x′′
I0
S
= 0.

IV. BLACK-BOX LINEAR PROGRAMMING SOLVERS

Our feasibility and optimization algorithms in Sections V

and VI use oracles that return approximate LP solutions.

These can be implemented by using any weakly-polynomial

algorithm that returns approximately optimal approximately

feasible solutions as in (APX-LP). We will use the following

result that summarizes recent developments on interior point

methods. Whereas the papers only formulate the main state-

ments on primal solutions, they all use primal-dual interior-

point methods, and also find dual solutions with similar

properties. We present the results in such a primal-dual form.

Theorem IV.1 ([22], [24], [25], [27]). Consider (LP) for
A ∈ R

m×n with rk(A) = m. Assume both the primal and
dual programs are feasible, let δ ∈ [0, 1] and d ∈ R

n
+ be

such a feasible primal solution i.e. Ad = b. Let RP and RD

be the diameters of the primal and dual solution sets in �2
norm, i.e., ‖x‖2≤ RP for all primal feasible solutions x,
and ‖s‖2≤ RD for all dual feasible solutions (y, s). Then,
we can find a vector (x, y, s) ∈ R

n+m+n with x, s ≥ 0 such
that

(i) 〈c, x〉 ≤ 〈b, y〉+ δ · (‖c‖2·RP + ‖d‖2·RD),
(ii) ‖Ax− b‖2≤ δ · (‖A‖F ·RP + ‖b‖2), and

(iii) ‖A�y + c− s‖2≤ δ · (‖A‖F ·RD + ‖c‖2).
in the following running time bounds:
(1) In O((mn + m3) logO(1)(n) log(n/δ)) expected run-

ning time [25].
(2) In O(nω+o(1) log(n/δ)) deterministic running time, as-

suming ω ≥ 13/6 [24]. The same expected running
time is achievable assuming ω ≥ 2 + 1/18 [27].

937

Authorized licensed use limited to: London School of Economics & Political Science. Downloaded on July 16,2021 at 18:04:21 UTC from IEEE Xplore. Restrictions apply.

(3) In O((nnz(A)+m2)
√
m logO(1)(n) log(n/δ)) expected

running time [22], where nnz(A) denotes the number
of nonzero entries in A.

We use the notation Ψ(A) to denote the ‘cost per unit’

in these results. Namely, a δ-approximate solution can be

obtained in time O(Ψ(A) log(n/δ)), where

Ψ(A) ≤ logO(1)(n)min{mn+m3, nω+o(1),√
m(nnz(A) +m2)} . (5)

We note that the third bound will not be directly applicable,

since we will use the oracle in various subspaces, where the

number of nonzero entries may increase.

V. THE FEASIBILITY ALGORITHM

Given a matrix A ∈ R
m×n and d ∈ R

n, we let W =
ker(A). In this section, we consider the feasibility problem

x ∈W + d, x ≥ 0.

A key insight is to work with a stronger system, includ-

ing a proximity constraint. According to Corollary III.2,

whenever the problem x ∈ W + d, x ≥ 0 is feasible and

κW ≤M , then the following system is also feasible. In fact,

this would be true even with the stronger bound M instead

of 16M2n; we use this weaker bound to leave sufficient

slack for the recursive argument. Note that if d ≥ 0, then

the only feasible solution is x = d.

x ∈W + d

‖x− d‖∞ ≤ 16M2n‖d−‖1
x ≥ 0.

(Feas-LP(W,d,M))

We use a black-box approach assuming an oracle that

returns an approximately feasible solution. We will as-

sume that an oracle Prox-Feas-Solver(W,d,M, ε) is given

as in Oracle 1. Outcome (i) gives an approximately

feasible solution with a bound on the negative compo-

nents and a somewhat stronger proximity guarantee as in

(Feas-LP(W,d,M)). Outcome (ii) gives a Farkas certificate

of infeasibility, whereas outcome (iii) gives a lifting certifi-

cate of M < κW .

Input : A subspace W ⊆ R
n, given as W = ker(A)

for A ∈ R
m×n, a vector d ∈ R

n, M, ε > 0.

Output: One of the following three outcomes

(i) A solution x to the system

x ∈W + d

‖x− d‖∞ ≤ 3M2n‖d−‖1
‖x−‖∞ ≤ ε‖d−‖1

(Prox-Feas(W,d,M, ε))

(ii) A vector y ∈W⊥, y ≥ 0, 〈d, y〉 < 0,

(iii) A subset I ⊆ [n] and a vector p ∈ πI(W) such that

‖LW
I (p)‖∞> M‖p‖1.

Oracle 1: Prox-Feas-Solver(W,d,M, ε)

The running time is stated as follows. Recall the definition

of Ψ(A) from (5).

Lemma V.1. There exists an O(Ψ(A) · log(M + n) +
nmω−1+o(1)) time algorithm, that either returns a solution
to Prox-Feas(W,d,M, ε), or concludes that (ii) or (iii)
should be the outcome of Prox-Feas-Solver(W,d,M, ε). In
the latter case, these outcomes can be obtained in additional
time O(nm2 + nω+o(1)).

The next lemma will be the key technical tool of the al-

gorithm. It allows to solve Feas-LP(W,d,M) by combining

an approximate solution to Prox-Feas(W,d′,M, ε) for some

d′ ∈ W + d with an exact solution to Feas-LP(W,d,M)
obtained recursively from a smaller system.

Recall that for a set K ⊆ [n], cl(K) denotes the closure

of K i.e., the unique largest set J ⊆ [n] such that K ⊂ J
and rk(AJ) = rk(AK).

We select a set K of indices i where xi is very large

in the approximate solution x; for such indices, proximity

guarantees that there must be a feasible solution x∗ ∈W+d,

x∗ ≥ 0 with x∗i > 0. We project out all these indices, along

with all other indices J = cl(K) \K in their closure, and

recurse on the remaining index set I . We note that the

purpose of the set J is to avoid creating loops from the

recursive instances.

The choice of the proximity bounds allow us to ‘stitch

together’ the solution obtained on πI(W) from the recursive

call with the approximate solution x to a feasible solution

to the original system. Roughly speaking, the amount of

change required to cancel out all negative coordinates in xI

is small enough so that x remains positive on K.

An important feature in the scheme is the choice of the

vector d′ for the approximate system. This will be either

d′ = d or d′ = d/W ; hence W + d′ = W + d. However,

this choice makes a difference due to the proximity bounds:

the system Feas-LP(W,d,M) features ‖d−‖1 as well as a

bound on ‖x− d‖∞.

In particular, if ‖d−‖1 is ‘too big’, then we may end up

with an empty index set K and cannot recurse. In this case,

we swap to d′ = d/W ; otherwise, we keep d′ = d. We note

that always swapping to d′ = d/W does not work either:

Feas-LP(W,d,M) features the bound ‖x− d‖∞, and using

‖x− d/W‖∞ in the approximate system may move us too

far from d. Fortunately, the bad cases for these two choices

turn out to be complementary.

Lemma V.2. Let M, ε > 0 such that ε ≤ 1/(16M4n4), let
d ∈ R

n and define

d′ =

{
d if ‖d−‖1< max

{
M‖d/W‖1, ‖d‖∞4M2n

}
,

d/W otherwise.

Let x be a feasible solution to Prox-Feas(W,d′,M, ε), and

938

Authorized licensed use limited to: London School of Economics & Political Science. Downloaded on July 16,2021 at 18:04:21 UTC from IEEE Xplore. Restrictions apply.

let
K =

{
i ∈ [n]:xi ≥ 16n2M3‖x−‖1

}
,

J = cl(K) \K ,

I = [n] \ cl(K).

(6)

Then K 	= ∅. Further, if Feas-LP(πI(W), xI ,M) is feasible,
then let w ∈ R

I be any feasible solution, and let

x′ = x+ LW
I∪J((w − xI , x

−
J)).

Then, either x′ is feasible to Feas-LP(W,d,M), or
‖LW

I∪J((w − xI , x
−
J))‖∞> M‖(w − xI , x

−
J)‖1, that is,

M < κW .
If y ∈ πI(W)⊥, y ≥ 0, 〈xI , y〉 < 0 is an infeasibility

certificate to x′ ∈ πI(W)+xI , xI ≥ 0, then y′ = (y, 0J∪K)
is an infeasibility certificate to x ∈W + d, x ≥ 0.

Algorithm 1: FEAS-ALG

Input : A ∈ R
m×n, W = ker(A) ⊆ R

n, rk(A) = m ,

d ∈ R
n, M ≥ 2.

Output: One of the following: (i) a solution x to

Feas-LP(W,d,M); (ii) a Farkas certificate of

infeasibility, or (iii) a lifting certificate that

M < κW .

1 if ‖d−‖1≥ max
{
M‖d/W‖1, ‖d‖∞/4M2n

}
then

2 d← d/W ;

3 if d ≥ 0 then return solution d ;

4 ε← 1/(2Mn)4 ;

5 switch Prox-Feas-Solver(W,d,M, ε) do
6 case (i)
7 x← Prox-Feas-Solver(W,d,M, ε) ;

8 K ← {i ∈ [n] : xi ≥ 16n2M3‖x−‖1} ;

9 J ← cl(K) \K ;

10 I ← [n] \ (J ∪K) ;

11 switch output of FEAS-ALG(πI(W), dI ,M) do
12 case (i)
13 x′ ← FEAS-ALG(πI(W), dI ,M);
14 w ← LW

I∪J(x
′ − xI , x

−
J) ;

15 if ‖w‖∞≤M‖(x′ − xI , x
−
J)‖1 then return

x+ w ;

16 else return lifting certificate of M < κW . ;

17 case (ii)
18 y ← FEAS-ALG(πI(W), dI ,M);
19 y′ ← (y, 0J∪K);
20 return Farkas certificate y′ to Feas-LP(W,d,M)
21 case (iii) return lifting certificate of M < κW ;

22 case (ii) return Farkas certificate ;

23 case (iii) return lift. certificate of M < κW ;

The overall feasibility algorithm is given in Algorithm 1,

a recursive implementation of Lemma V.2. The output can

be (i) a feasible solution to Feas-LP(W,d,M); (ii) a Farkas

certificate of infeasibility, or (iii) a lifting certificate of M <
κW . The latter will always be of the form of an index set

I ⊆ [n] and a vector p ∈ πI(W) such that ‖LW
I (p)‖∞>

M‖p‖1. In this case, we can restart the entire algorithm,

after updating M to max{‖LW
I (p)‖∞/‖p‖1,M2}.

The algorithm calls Oracle 1. For outputs (ii) and (iii),

we return the Farkas certificate or the lifting certificate for

M < κW . For output (i), we construct the sets I , J , and K
and recurse on πI(W), as in Lemma V.2.

We are now ready to state the central theorem of this

section, which in particular proves Theorem I.1.

Theorem V.3. Algorithm 1 is correct. If M > κW and the
system x ∈W + d, x ≥ 0 is feasible, then the algorithm re-
turns a solution in time O(mΨ(A) log(M+n)+mnω+o(1)).
If the system is infeasible or M < κW , then a Farkas cer-
tificate or a lifting certificate can be obtained in additional
running time O(nm2 + nω+o(1)).

VI. THE OPTIMIZATION ALGORITHM

In this section, we show how Primal-Dual(W,d, c) can be

solved using an approximate LP solver. As in the feasibility

algorithm, we let M denote our current upper estimate on

2κW . We present an algorithm that comprises an Inner and

an Outer Loop. The calls to the approximate LP solver will

happen inside the Inner Loop.

The outer loop gives an algorithmic implementation of

Theorem III.6. The subroutine INNERLOOP(W,d, c,M) re-

turns a solution (d̃, x̃, s), where d̃ is a ‘perturbed’ version of

d, and (x̃, s) are optimal solutions to Primal-Dual(W, d̃, c).
We get (d̃, x̃, s̃) as solutions to the following system.

‖d̃− d‖1 ≤ ‖x̃‖∞
4n2M2

x̃ ∈W + d̃

s̃ ∈W⊥ + c

〈x̃, s̃〉 = 0

x̃, s̃ ≥ 0.

(F-Primal(W,d, c,M))

The subroutine will be described in Section VI-B; we now

state the running time.

Theorem VI.1. Assume we are given a matrix A ∈ R
m×n,

vectors c ∈ R
n and d ∈ R

n
+; let W = ker(A), and M

be an estimate on κW . There exists an O(nΨ(A) log(M +
n)+nω+1+o(1)) time algorithm (Algorithm 3) that returns a
solution (d̃, x̃, s̃) to F-Primal(W,d, c,M), or decides that the
system is either primally infeasible or M < κW . To obtain
a Farkas certificate of primal infeasibility or a certificate
that M < κW is obtained in additional time O(n3m).

The overall algorithm described in Section VI-A repeat-

edly calls INNERLOOP to set primal and dual variables to

0 according to Theorem III.6, and recurses to lower dimen-

sional subspaces. The final optimal solutions are obtained

via calling the feasibility algorithm on both primal and

939

Authorized licensed use limited to: London School of Economics & Political Science. Downloaded on July 16,2021 at 18:04:21 UTC from IEEE Xplore. Restrictions apply.

dual side. The drawback of this variant is that, in case

the algorithm fails, we do not obtain lifting certificates of

M < κW —a guarantee we can achieve for feasibility in

Section V. A post-processing, as described in Lemma VI.5

is able to create a certificate of M < κW , at an additional

computational expense.

A. The Outer Loop

Consider an instance of Primal-Dual(W,d, c) and an

estimate M on κW . We first use the feasibility algorithm and

check if both systems x ∈W + d, x ≥ 0 and s ∈W⊥ + c,
s ≥ 0 are feasible. For the remainder of this section, let us

assume both these systems are feasible, and consequently,

Primal-Dual(W,d, c) is also feasible. Moreover, we can

write an equivalent system with nonnegative d ≥ 0. (We

could also impose c ≥ 0, but this will not be used).

The overall algorithm is presented in Algorithm 2. We

let (W 0, d0, c0) denote the original input, where W 0 is

a subspace of R
n, and d0, c0 ∈ R

n, d0 ≥ 0. We will

maintain an index set I ⊆ [n], initialized as I = [n].
We gradually move every index into the set B or N . We

apply Theorem III.6 with thresholds τ = ‖x‖∞/(3n2M)
and T = ‖x‖∞/n. The bound ‖d̃ − d‖1≤ ‖x̃‖∞/4n2M2

in F-Primal(W,d, c,M) guarantees that these are suitable

choices. Assuming that M ≥ κW , we obtain s∗B = 0 for

every dual optimal solution s∗, and that there exists a primal

optimal solution x∗ with x∗N = 0. Note the asymmetry

between the two sides; the weaker guarantee on N already

suffices for correctness.

At every iteration, we have an index set I ⊆ [n] of ‘un-

decided indices’ and a subspace W ⊆ R
I . We consider the

partition I = IL∪IM ∪I+S ∪I0S according to Theorem III.6,

and add IL∪IM to B and I0S to N . The optimal solution x′′

guaranteed in the theorem implies that the optimum value

is the same on W and W ′ = W ∩ R
I
IL∪IS∪I+

S

, i.e. the

subspace where all entries in I0S are forced to 0. We then

update I = I+S as the remaining set of undecided indices

and recurse on the subspace πI(W
′).

The algorithm terminates when d is contained in W .

The remaining indices I are split up between B and N
based on whether they are in the support of the optimal

dual solution of the perturbed system. Finally, we obtain the

primal and dual solutions by solving feasibility problems

on the subsets B and N . If both are feasible, they form a

complementary pair of primal and dual solutions, and hence

they are optimal. In case of a failure, we conclude that the

underlying assumption M ≥ κW was wrong.

Theorem VI.2. Assuming that Primal-Dual(W 0, d0, c0) is
both primal and dual feasible, Algorithm 2 either finds
an optimal solution to Primal-Dual(W 0, d0, c0) or correctly
concludes that M < κW 0 by at most m calls to the subrou-
tine INNERLOOP. The total runtime is O(mnΨ(A) log(M+

Algorithm 2: Optimization Algorithm

Input : W 0 ⊆ R
n ; c0 ∈ R

n, d0 ∈ R
n
+ such that

Primal-Dual(W 0, d0, c0) is feasible, and

M ≥ 2.

Output: Solution (x∗, s∗) to Primal-Dual(W 0, d0, c0)
or the answer M < κW 0 .

1 W ←W 0 ; d← d0 ; c← c0/W⊥ ;

2 I ← [n] ; B ← ∅; N ← ∅ ;

3 while I 	= ∅ and d /∈W do
4 if INNERLOOP(W,d, c,M) returns M < κW then

return M < κW . ;

5 (d̃, x̃, s̃)← INNERLOOP(W,d, c,M) ;

6 IL ← {i ∈ I : x̃i > ‖x̃‖∞/n} ;

7 IM ← {i ∈ I : ‖x̃‖∞/n ≥ x̃i > ‖x̃‖∞/(3n2M)} ;

8 IS ← {i ∈ I : ‖x̃‖∞/(3n2M) ≥ x̃i} ;

9 I0S ← IS ∩ cl(IL) ; I+S ← IS \ cl(IL) ;

10 B ← B ∪ IL ∪ IM ; N ← N ∪ I0S ;

11 W ′ ←W ∩ R
I
IL∪IM∪I+

S

;

12 I ← I+S ;

13 W ← πI(W
′) ; d← dI ; c← s̃I ;

14 N ← N ∪ (I ∩ supp(s̃)) ; B ← B ∪ (I \ supp(s̃)) ;

15 if FEAS-ALG(W 0
B , d

0) and FEAS-ALG((W 0)⊥N , c0)
are feasible then

16 x∗ ← FEAS-ALG(W 0
B , d

0) ;

17 s∗ ← FEAS-ALG((W 0)⊥N , c0) ;

18 return (x∗, s∗)

19 else return M < κW 0 ;

n)+mnω+1+o(1))to find a primal-dual optimal pair. Obtain-
ing a lifting certificate requires additional time O(n3m2).

B. The Inner Loop

For the Inner Loop and d ≥ 0 we formu-

late the stronger version F-Primal-Prox(W,d, c,M, ε) of

F-Primal(W,d, c,M), which maintains dual proximity and

therefore—in similar vein as the feasibility algorithm—only

needs an oracle with precision (Mn)−O(1) for recursive

calls. We define F-Primal-Prox(W,d, c,M, ε):

x ∈W + d, s ∈W⊥ + c, s ≥ 0,

‖s− c‖∞ ≤ 16M2n‖cΛ(c,d)‖1,
‖xΛ(x,s)‖∞ ≤ 2εn‖x‖∞.

Given an output (x, s) to this system with ε ≤ 1/(32M4n4),
we obtain a solution to F-Primal(W,d, c,M) as

x̃i =

{
0 if i ∈ Λ(x, s) ,

xi otherwise,
, d̃ = d−x+x̃ , s̃ = s . (7)

We will assume that the following oracle (Oracle 2) is

available, that returns a solution (c̃, x, s) to the system Prox-
Opt(W,d, c,M, ε), a primal or dual infeasibility certificate,

940

Authorized licensed use limited to: London School of Economics & Political Science. Downloaded on July 16,2021 at 18:04:21 UTC from IEEE Xplore. Restrictions apply.

or a lifting certificate. For the input, we require the nonneg-

ativity c ≥ 0. This will be perturbed to c̃, and (x, s) will

be near-optimal and near-feasible primal and dual solutions

with respect to the perturbed system, satisfying a primal

proximity constraint.

Input : W ⊆ R
n, c ∈ R

n
+, d ∈ R

n, M ≥ 2, ε > 0.

Output: One of the following:

(i) A solution to the system Prox-Opt(W,d, c,M, ε):

x ∈W + d, s ∈W⊥ + c̃, s ≥ 0, c− c̃ ≥ 0,

‖xΛ(x,s)‖∞ ≤ ε‖dΛ(d,c)‖1
‖x− d‖∞ ≤ 3M2n‖dΛ(d,c)‖1
‖c− c̃‖∞ ≤ ε

n
‖c/W⊥‖1

(ii) A vector y ∈W⊥, y ≥ 0, 〈d, y〉 < 0,

(iii) A vector x ∈W , x ≥ 0, 〈c, x〉 < 0,

(iv) A lifting certificate of M < κW = κW⊥ .

Oracle 2: Prox-Opt-Solver(W,d, c,M, ε)

Lemma VI.3. Assume we are given a matrix A ∈ R
m×n,

vectors c ∈ R
n
+ and d ∈ R

n; let W = ker(A), and M be
an estimate on κW . Further, let 0 < ε < 1. There exists an
O(Ψ(A) · log(M + n) + nmω−1+o(1)) time algorithm, that
either returns a solution to Prox-Opt(W,d, c,M, ε) or con-
cludes that (ii), (iii) or (iv) should be the outcome of Prox-
Opt-Solver(W,d, c,M, ε). These latter outcomes require an
additional computational time O(n3m).

INNERLOOP(W,d, c,M, ε) recursively calls itself and Or-

acle 2, while maintaining dual proximity. The Oracle will be

called for the dual system.

Lemma VI.4. Let M be an estimate on κW , 0 < ε <
1/(32M4n4). Let us define

c′ =

{
c if ‖cΛ(c,d)‖1< max

{
M‖c/W⊥‖1, ‖c‖∞4M2n

}
,

c/W⊥ otherwise.

Let (x, s) be a feasible solution to Prox-
Opt(W⊥, c′, d,M, ε) and let

I = {i ∈ [n] : si ≤ 16n3M3‖sΛ(s,x)‖1} , J = [n] \ I .
Then, the following hold:

(i) If I = ∅, then we must have s ≥ 0 and d ∈ W , and
(0, s) is feasible to F-Primal-Prox(W,d, c,M, ε).

(ii) If I 	= ∅, then let (w, z) be a solution to F-Primal-
Prox(WI , xI , sI ,M, ε), and define

x̃ = (w, xJ) + d− d̃, and s̃ = s+ LW⊥
I (z − sI) .

Then either (x̃, s̃) is feasible to F-Primal-
Prox(W,d, c,M, ε) or we obtain a lifting certificate of
M < κW⊥ = κW .

(iii) J 	= ∅.
Algorithm 3 implements the recursive calls in accordance

with Lemma VI.4. This is the algorithm asserted in Theo-

rem VI.1.

Algorithm 3: INNERLOOP

Input : W ⊆ R
n, c ∈ R

n, d ∈ R
n
+ such that

Primal-Dual(W,d, c) is feasible, M ≥ 1.

Output: A solution (d̃, x̃, s̃) to

F-Primal-Prox(W,d, c,M, ε) or lifting

certificate of M < κW .

1 ε← 1/(32M4n4) ;

2 if ‖cΛ(c,d)‖1≥ max
{
M‖c/W⊥‖1, ‖c‖∞4M2n

}
then

c← c/W⊥ ;

3 if Prox-Opt-Solver(W⊥, c, d,M, ε) in (i) then
4 (d̃, s, x)← Prox-Opt-Solver(W⊥, c, d,M, ε) ;

5 I = {i : si < 16(Mn)3‖sΛ(s,x)‖1}, J = [n] \ I;

6 if I = ∅ then return (x, s);
7 else
8 if INNERLOOP(WI , xI , sI ,M, ε) returns a solution

then
9 (w, z)← INNERLOOP(WI , xI , sI ,M, ε) ;

10 if ‖LW⊥
I (z − sI)‖∞≤M‖z − sI‖1 then

11 x̃← (w, xJ) + d− d̃ ;

12 s̃← s+ LW⊥
I (z − sI) ;

13 return (x̃, s̃) ;

14 else return Lifting certificate of M < κW ;

15 else return Lifting certificate of M < κW ;

16 else return Lifting certificate of M < κW ;

C. Certificate for the wrong guess

Algorithm 2 only provides the verdict M < κW without

providing the corresponding certificate. The INNERLOOP is

able to provide a certificate, but if infeasibility is detected

in the calls to the FEAS-ALG in lines Line 16 and Line 17

then this means that the partition B∪N is wrong. Note that

failed calls to FEAS-ALG could also result in M < κW for

which the feasibility solvers provide a certificate. We are

nonetheless able to provide a certificate of M < κW .

Lemma VI.5. In line 17 of Algorithm 2, the dual feasibility
solver always succeeds to find a dual solution or finds a
certificate of M < κW . If the primal feasibility solver in
line 16 fails to find a primal feasible solution, then we can
find a lifting certificate of M < κW in O(n3m2) time.

REFERENCES

[1] L. G. Khachiyan, “A polynomial algorithm in linear program-
ming,” in Doklady Academii Nauk SSSR, vol. 244, pp. 1093–
1096, 1979.

941

Authorized licensed use limited to: London School of Economics & Political Science. Downloaded on July 16,2021 at 18:04:21 UTC from IEEE Xplore. Restrictions apply.

[2] N. Megiddo, “Towards a genuinely polynomial algorithm for
linear programming,” SIAM Journal on Computing, vol. 12,
no. 2, pp. 347–353, 1983.

[3] A. V. Goldberg and R. E. Tarjan, “Finding minimum-cost
circulations by canceling negative cycles,” Journal of the
ACM (JACM), vol. 36, no. 4, pp. 873–886, 1989.

[4] J. B. Orlin, “A faster strongly polynomial minimum cost flow
algorithm,” Operations Research, vol. 41, no. 2, pp. 338–350,
1993.

[5] É. Tardos, “A strongly polynomial minimum cost circulation
algorithm,” Combinatorica, vol. 5, pp. 247–255, Sep 1985.

[6] L. A. Végh, “A strongly polynomial algorithm for generalized
flow maximization,” Mathematics of Operations Research,
vol. 42, no. 2, pp. 179–211, 2017.

[7] N. Olver and L. A. Végh, “A simpler and faster strongly
polynomial algorithm for generalized flow maximization,” in
Proceedings of the Forty-Ninth Annual ACM Symposium on
Theory of Computing (STOC), pp. 100–111, 2017.

[8] Y. Ye, “A new complexity result on solving the Markov deci-
sion problem,” Mathematics of Operations Research, vol. 30,
no. 3, pp. 733–749, 2005.

[9] Y. Ye, “The simplex and policy-iteration methods are strongly
polynomial for the Markov decision problem with a fixed
discount rate,” Mathematics of Operations Research, vol. 36,
no. 4, pp. 593–603, 2011.

[10] S. Iwata, L. Fleischer, and S. Fujishige, “A combinatorial
strongly polynomial algorithm for minimizing submodular
functions,” Journal of the ACM (JACM), vol. 48, no. 4,
pp. 761–777, 2001.

[11] D. Dadush, L. A. Végh, and G. Zambelli, “Geometric rescal-
ing algorithms for submodular function minimization,” in
Proceedings of the Twenty-Ninth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 832–848, SIAM, 2018.

[12] É. Tardos, “A strongly polynomial algorithm to solve combi-
natorial linear programs,” Operations Research, pp. 250–256,
1986.

[13] A. J. Hoffman, “On approximate solutions of systems of
linear inequalities,” J. Res. Natl. Bur. Stand., vol. 49, no. 4,
pp. 263–265, 1952.

[14] W. Cook, A. M. Gerards, A. Schrijver, and É. Tardos, “Sensi-
tivity theorems in integer linear programming,” Mathematical
Programming, vol. 34, no. 3, pp. 251–264, 1986.

[15] S. A. Vavasis and Y. Ye, “A primal-dual interior point method
whose running time depends only on the constraint matrix,”
Mathematical Programming, vol. 74, no. 1, pp. 79–120, 1996.

[16] S. A. Vavasis and Y. Ye, “Condition numbers for polyhedra
with real number data,” Operations Research Letters, vol. 17,
pp. 209–214, 06 1995.

[17] Y. Ye, “Improved complexity results on solving real-number
linear feasibility problems,” Mathematical Programming,
vol. 106, pp. 339–363, Apr. 2006.

[18] G. Stewart, “On scaled projections and pseudoinverses,” Lin-
ear Algebra and its Applications, vol. 112, pp. 189 – 193,
1989.

[19] D. Dadush, S. Huiberts, B. Natura, and L. A. Végh, “A
scaling-invariant algorithm for linear programming whose
running time depends only on the constraint matrix,” in
Proceedings of the 52nd Annual ACM Symposium on Theory
of Computing (STOC), pp. 761–774, 2020.

[20] R. D. C. Monteiro and T. Tsuchiya, “A variant of the
Vavasis-Ye layered-step interior-point algorithm for linear
programming,” SIAM Journal on Optimization, vol. 13, no. 4,
pp. 1054–1079, 2003.

[21] R. D. C. Monteiro and T. Tsuchiya, “A new iteration-
complexity bound for the MTY predictor-corrector algo-
rithm,” SIAM Journal on Optimization, vol. 15, no. 2,
pp. 319–347, 2005.

[22] Y. T. Lee and A. Sidford, “Solving linear programs with
Õ(

√
rank) linear system solves.” arXiv preprint 1910.08033,

2019.
[23] M. B. Cohen, Y. T. Lee, and Z. Song, “Solving linear

programs in the current matrix multiplication time,” in Pro-
ceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, pp. 938–942, 2019.

[24] J. van den Brand, “A deterministic linear program solver in
current matrix multiplication time,” in Proceedings of the
Symposium on Discrete Algorithms (SODA), 2020.

[25] J. van den Brand, Y. T. Lee, A. Sidford, and Z. Song, “Solving
tall dense linear programs in nearly linear time,” 2020.

[26] Y. T. Lee, Z. Song, and Q. Zhang, “Solving empirical risk
minimization in the current matrix multiplication time,” in
COLT, vol. 99 of Proceedings of Machine Learning Research,
(Phoenix, USA), pp. 2140–2157, PMLR, 25–28 Jun 2019.

[27] S. Jiang, Z. Song, O. Weinstein, and H. Zhang, “Faster
Dynamic Matrix Inverse for Faster LPs,” arXiv:2004.07470
[cs], Apr. 2020.

[28] J. C. Ho and L. Tunçel, “Reconciliation of various complexity
and condition measures for linear programming problems
and a generalization of Tardos’ theorem,” in Foundations of
Computational Mathematics, pp. 93–147, World Scientific,
2002.

[29] S. Mizuno, M. Todd, and Y. Ye, “On adaptive-step primal-
dual interior-point algorithms for linear programming,” Math-
ematics of Operations Research - MOR, vol. 18, pp. 964–981,
11 1993.

[30] M. Grötschel, L. Lovász, and A. Schrijver, Geometric al-
gorithms and combinatorial optimization, vol. 2. Springer
Science & Business Media, 2012.

[31] A. Frank and É. Tardos, “An application of simultaneous
diophantine approximation in combinatorial optimization,”
Combinatorica, vol. 7, no. 1, pp. 49–65, 1987.

[32] L. G. Khachiyan, “On the complexity of approximating
extremal determinants in matrices,” J. Complex., vol. 11,
pp. 138–153, Mar. 1995.

[33] L. Tunçel, “Approximating the complexity measure of
Vavasis-Ye algorithm is NP-hard,” Mathematical Program-
ming, vol. 86, pp. 219–223, Sep 1999.

[34] I. Dikin, “Iterative solution of problems of linear and
quadratic programming,” Doklady Akademii Nauk, vol. 174,
no. 4, pp. 747–748, 1967.

[35] M. J. Todd, “A Dantzig–Wolfe-like variant of Karmarkar’s
interior-point linear programming algorithm,” Operations Re-
search, vol. 38, no. 6, pp. 1006–1018, 1990.

[36] D. P. O’Leary, “On bounds for scaled projections and pseu-
doinverses,” Linear Algebra and its Applications, vol. 132,
pp. 115–117, Apr. 1990.

[37] S. A. Vavasis, “Stable numerical algorithms for equilibrium
systems,” SIAM Journal on Matrix Analysis and Applications,
vol. 15, no. 4, pp. 1108–1131, 1994.

[38] J. Pena, J. C. Vera, and L. F. Zuluaga, “New characteriza-
tions of hoffman constants for systems of linear constraints,”
Mathematical Programming, pp. 1–31, 2020.

[39] A. Schrijver, Theory of linear and integer programming. John
Wiley & Sons, 1998.

942

Authorized licensed use limited to: London School of Economics & Political Science. Downloaded on July 16,2021 at 18:04:21 UTC from IEEE Xplore. Restrictions apply.

