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Abstract We investigate theMultiplayer Multicommodity Flow Prob-

lem (MMFP): several players have di�erent networks and commodities over
a common node set. Pairs of players have contracts where one of them agrees
to route the �ow of the other player (up to a given capacity) between two
speci�ed nodes. In return, the second player pays an amount proportional to
the �ow value.

We show that the social optimum can be computed by linear program-
ming, and we propose algorithms based on column generation and Lagrangian
relaxation. In contrast, we prove that it is hard to decide if an equilibrium
solution exists, although some natural conditions guarantee its existence.

Keywords optimization · multicommodity �ows · equilibria

1 Introduction

The Directed Multicommodity Flow Problem is a well-studied opti-
mization problem with extensive literature. The fractional version, which is
relevant to the topic of this paper, has a polynomial-size LP formulation and
therefore it is solvable in polynomial time. However, the simplex algorithm in
itself is ine�cient due to the large size of the LP, so several improvements and
other algorithmic approaches have been proposed, see e.g. [3,6,2]. Two general
approaches that are applicable to this problem are column generation, which
was already proposed by Ford and Fulkerson [5], and Lagrangian relaxation,
which is used for example in [2].

In this paper we investigate a generalization of the multicommodity �ow
problem that we call the Multiplayer Multicommodity Flow Problem

(MMFP). It involves several players, each having di�erent networks and com-
modities over a common node set. The input includes contracts between pairs
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of players; each contract obliges one player to route the �ow of the other
player between two speci�ed nodes (up to a given capacity). In return, the
other player pays an amount proportional to the �ow value. We also allow a
multiplier applied to the amount of �ow to be routed by the second player,
which may model e.g. the increase of data size due to conversion between
networks.

Multiplayer �ows have already been studied in the literature in the context
of cooperative games, but the usual setting is to have a single network where
each player owns a subset of the arcs, and other players are allowed to buy a
fraction of the arc capacity [4,1]. Our network model is more general in the
sense that players can choose how to route demands generated by contracts
with other players.

The �ow multipliers associated with the contracts add another layer of
generalization that is subtle in the sense that the interpretation of feasible
solutions in terms of actual transportation of commodities becomes tricky.
We show in Section 2 that such an interpretation is always possible if the
�ow multipliers are at least 1, using the notion of realization of a path which
corresponds naturally to the transportation of a commodity. In contrast, mul-
tipliers smaller than 1 may result in feasible solutions that do not have such
an interpretation.

In the rest of the current section we give the necessary de�nitions, includ-
ing the notion of social optimum, safe instance and equilibrium solution. It
is shown in Section 2 that the problem of �nding a social optimum can be
solved in polynomial time using linear programming, and we give a �common
sense� interpretation of feasible solutions in terms of realizations of paths and
acyclic solutions. The aim of Section 3 is to extend the column generation and
Lagrangian relaxation methods for multicommodity �ows to MMFP. In Sec-
tion 4, we prove using the Kakutani Fixed Point Theorem that an equilibrium
solution always exists in a safe instance, while in general it is NP-complete to
decide its existence.

1.1 De�nitions and notation

Given a set of players I, each player has a digraph Di = (V,Ai) (with disjoint
arc sets) with costs c : ∪i∈IAi → R+, capacities u : ∪i∈IAi → R+, and normal
demands: a �ow of size dij has to be sent from sij to t

i
j (j ∈ J i). There is a subset

of arcs Bi ⊆ Ai called contractual arcs, where the player has a contract with
another player requiring the other player to route the �ow between the two
endnodes of the arc in her own network for a speci�ed price (proportional to
the amount of �ow). The arcs in Ai\Bi are called normal arcs. Let A = ∪i∈IAi

and B = ∪i∈IBi.
The following additional values are given for each contractual arc a ∈ Bi.

ia is the player that has to route the �ow going through a. fa : [0, ua]→ R+ is
a continuous monotone increasing function that gives the amount of �ow to be
routed, i.e. if the �ow value of a = uv is x, then player ia has to route a �ow of
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size fa(x) from u to v. This function may model the increase of data size due
to the conversion between networks. Usually we will consider the linear case
fa(x) = dax. We always assume that da ≥ 1 (or, in general fa(x) ≥ x for any
x ∈ R+) holds for every a ∈ B. The resulting demand in the network of ia is
called a contractual demand for player ia. The identi�er of this demand is ka.
Let Ki be the set of identi�ers of the contractual demands for player i; then
ka ∈ Kia for a ∈ Bi. We assume that all the identi�er sets J i,Ki(i ∈ I) are
disjoint and let J = ∪i∈IJ i and K = ∪i∈IKi. Note that a 7→ ka is a bijection
between B and K.

A contractual arc a has a contract price, denoted by pa. If the �ow value of
a = uv is x, then player i has to pay pax to player ia in exchange for sending
the �ow.

It may seem confusing at �rst that a contractual arc has both a contract
price pa and a cost ca. A possible interpretation is that the contract price
determines the payment to another player, while the cost of a contractual arc
represents the cost of transferring the �ow to another network. We do not
make any restrictions on the costs, but it is probably a natural assumption
that costs of contractual arcs are much lower than costs of normal arcs.

1.2 Feasible and equilibrium solutions

In a feasible solution each player has a multicommodity �ow (one commodity
for every j ∈ J i ∪Ki) that satis�es all normal and contractual demands. Note
that here the contractual demands depend on the multicommodity �ows of
the other players.

A social optimum solution is a feasible solution which is optimal for the
cost function c. The contract prices play no role in this de�nition.

Let us motivate the assumption da ≥ 1 (a ∈ B). Consider the following
two-player example where V = {s, t}. Let A1 = B1 = {a = st} and A2 =
B2 = {b = st} (i.e. both players have a contract with the other) and the
only normal demand is for player 1 who has to ship 1 unit from s to t (i.e.
let J1 = {j1} with these parameters and let J2 = ∅). Let the capacities be
given as ua = 2 and ub = 1 and the multipliers as da = 1/2 and db = 1. The
following is a feasible solution: the �rst player ships 2 units from s to t on arc
a which is the sum of two �ows xj1 (satisfying the normal demand j1 ∈ J1)
and xkb (satisfying the contractual demand kb to be described later). The �ow
on arc a induces a contractual demand of value 1 for player 2, since da = 1/2,
which is shipped on arc b, i.e. xka(b) = 1. This in turn generates a contractual
demand of value 1 for player 1 (since db = 1). Clearly, this is a feasible solution
of the problem, although from a practical point of view it does not make sense
(for example this solution does not have a physical routing). This example
shows that the assumption da ≥ 1 (or, in general fa(x) ≥ x for any a ∈ B and
x ∈ R+) is indeed natural.

We say that an instance of MMFP is a safe instance if each player i has
a feasible solution for the standard multicommodity �ow problem in Di (in-
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cluding the arcs in Bi!) for all her normal demands plus all her contractual
demands set at their maximum (for a contractual arc a = uv, the maximal
contractual demand for player ia is f(ua) from u to v).

An equilibrium solution is a feasible solution which is a minimum cost
multicommodity �ow restricted to each player's network for the player's nor-
mal and contractual demands induced by the solution. Here the cost of arc
a ∈ Ai \Bi is ca, while the cost of arc a ∈ Bi is ca + pa. It may seem strange
that we do not consider the contract prices that a player receives; this is be-
cause these received payments depend only on the multicommodity �ows of
the other players, so they are irrelevant to whether a player's multicommodity
�ow is minimum cost or not in her own network (they add a constant to the
cost if the �ows of the other players are �xed).

It is important to note that this notion of equilibrium is stronger than the
usual Nash-equilibrium, because here players cannot improve their objective
even with strategy changes that render the whole solution infeasible.

2 LP formulation and interpretation

2.1 LP formulation

In case of fa(x) = dax, there are two main LP models for �nding the social
optimum: the arc-�ow and the path-�ow formulations. The �rst one can be
written as follows.

min
∑
i∈I

∑
a∈Ai

ca

∑
j∈Ji

xja +
∑
k∈Ki

xka

 (1)

∑
j∈Ji

xja +
∑
k∈Ki

xka ≤ ua ∀a ∈ Ai, ∀i ∈ I, (2)

N ixj = dijδ
j ∀j ∈ J i, ∀i ∈ I, (3)

N iaxka = da

∑
j∈Ji

xja +
∑
k∈Ki

xka

 δa ∀a ∈ Bi, ∀i ∈ I, (4)

xja ≥ 0 ∀a ∈ Ai, j ∈ J i, ∀i ∈ I, (5)

xka ≥ 0 ∀a ∈ Ai, k ∈ Ki, ∀i ∈ I. (6)

Here, N i is the network matrix of the ith player, δj is a vector with only
two non-zero components: −1 at the supply node and 1 at the demand node.
Similarly, δa is a vector with only two non-zero components: −1 at the tail
and 1 at the head of the arc a. The variable xj is the �ow of commodity j ∈ J i

on the arcs of the network of the ith player. The variable xk is the �ow of
contractual commodity k ∈ Ki on the arcs of the network of the ith player.

The path-�ow formulation of the problem requires some additional nota-
tion. Let Pi

j denote the set of paths in D
i from the source to the sink of the jth
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commodity of player i. Similarly, Pi
k denotes the set of paths in Di from the

source to the sink of the kth contractual commodity of player i. We also assume
that if there is more than one (normal or contractual) demand in Di between
s and t for a certain pair s, t ∈ V , then for each demand there is a separate Pi

j

(j ∈ J i ∪Ki) that contains all s-t paths in Di. Let Pi = ∪j∈JiPi
j

⋃
∪k∈KiPi

k

and P = ∪i∈IPi. The corresponding LP problem is

min
∑
P∈P

c(P )xP (7)

x ∈ RP (8)

x ≥ 0 (9)∑
P∈Pi:a∈P

xP ≤ ua ∀a ∈ Ai, i ∈ I, (10)

∑
P∈Pi

j

xP ≥ dij ∀j ∈ J i, i ∈ I, (11)

∑
P∈Pia

ka

xP ≥ da

( ∑
P∈Pi:a∈P

xP

)
∀a ∈ Bi, i ∈ I. (12)

The variable xP , P ∈ Pi
j (P ∈ Pi

k) belongs to the �ow of (contractual) com-
modity j (k) on the path P , and c(P ) =

∑
a∈P ca.

The correspondence between the solutions of (2)-(6) and the solutions of
(8)-(12) is the following. If xl (l ∈ J ∪K) is a solution of (2)-(6), then we can
take a path-decomposition of every �ow xl (leaving out the possible cycles)
and get a solution of (8)-(12). On the other hand, if xP (P ∈ P) is a solution of
(8)-(12), then xl =

∑
P∈Pi

l
xP for every i ∈ I and l ∈ J i ∪Ki gives a solution

of (2)-(6).

2.2 Interpretation of feasible solutions

We assume da ≥ 1 for all contractual arcs a ∈ Bi, hence fa(x) ≥ x for all
a ∈ Bi, x ∈ [0, ua]. In this section we consider the path representation of the
MMFP, using the notation P,Pi,Pi

j of the previous subsection. Our aim is to
formalize the intuitive notion that the commodities corresponding to normal
demands are actually transferred to their destination with a �nite number of
transfers between networks of di�erent players.

A feasible solution in the path representation is given by a vector x ∈ RP+
that satis�es the constraints (10)-(12). Intuitively, a solution of this system
amounts to a physical routing along paths, in which we satisfy a portion of
the jth demand of the ith player by a certain path P1 ∈ Pi

j . However, if
P1 contains a contractual arc a, then the corresponding contractual demand
is satis�ed by another path P2 ∈ Pia

ka
, and so on. P1 may contain several

contractual arcs, thus we may need paths other than P2 to satisfy contractual
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cj1

Player 1 Player 3Player 2

b

a ka

kb

kc

Fig. 1 A path whose realization cannot be represented by an arborescence. Black denotes
normal and red denotes contractual; a solid line is an arc while a dotted line is a demand.
In the realization of the path ab, the sink (which corresponds to the single-arc path in the
network of player 3) has in-degree 2.

demands generated by P1. Then again, P2, and all the other paths will generate
further contractual demands that have to be satis�ed. Thus we may iteratively
generate further contractual demands, with no end in sight. Even worse, the
number of contractual demands may increase with every iteration, and also
we could run into an in�nite loop. This we have to avoid by all means if we
want to demonstrate that a solution to the MMFP gives a realizable routing
of the normal demands. Further, this motivates the following de�nition, which
essentially formulates the �nite realization of a path. We say that a path
P ∈ Pi is a normal path if it contains only normal arcs.

De�nition 1 Let P ∈ P be arbitrary. We give a recursive de�nition of a
digraph (R,F ) with R ⊆ P: start with R = {P} and F = ∅, and in every step
choose a node Q ∈ R that is not a normal path and has out-degree zero in
(R,F ). For every contractual arc a ∈ Q choose an (arbitrary) path Qa ∈ Pia

ka

and add it to R (if it was not already in it) and include the arc QQa in F , too.
Clearly, the construction is �nite. Thus the out-degree of any node Q in (R,F )
equals the number of contractual arcs in Q. If (R,F ) is acyclic, then we say
that it is a realization of P (a path P might have many di�erent realizations).

We are only interested in realization of paths P ∈ Pi
j for j ∈ J i. The set of

realized paths is denoted by R. Let Ri
j denote the set of realized paths that

realize a path in Pi
j for an i ∈ I, j ∈ J i, and also let Ri := ∪j∈JiRi

j for any
i ∈ I.

If (R,F ) is a realization of P , then let d(R,F ) : R → R+ denote the �ow
values needed to realize the path P at the root, which is de�ned as follows:
d(R,F )(P ) := 1, and if Q ∈ R ∩ Pia

ka
for some a ∈ B, then d(R,F )(Q) :=

da
∑t

j=1 d(R,F )(Qj) where Q1, Q2, . . . , Qt are the parents of Q in (R,F ).
One might think that the above de�nition is more laborious than necessary:

a realized path could simply be an arborescence (R,F ) with R ⊆ P. However,
the example in Figure 1 shows that we cannot make this assumption.
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To interpret this de�nition in terms of shipping of commodities, consider
a realized path (R,F ) such that P ∈ P is the root in (R,F ). Assume we want
to ship one unit of the commodity from the �rst node of P to the last node
of P . We may do this, of course, via P if it only uses normal arcs, and in this
case (R,F ) is a single node. Otherwise P may contain a number of contractual
arcs, which may be realized by the children of P in (R,F ). This, by constraint
(12), requires the shipping of da units of the contractual commodity ka by
contractor ia. Thus when we encounter a contractual arc a in P ∩ Pi

j , we
satisfy the contractual demand generated by arc a using the unique child Q
of P with Q ∈ Pia

ka
. Note that we need to make |F | such calls in total, since

(R,F ) is acyclic.
Given a solution x ∈ RP+ of (10)-(12), a realization of x, i.e. a realization

of a feasible solution is given by a non-negative vector y ∈ RR+ that satis�es

∑
(R,F )∈R:P∈R

y(R,F )d(R,F )(P ) ≤ xP ∀P ∈ P (13)

∑
(R,F )∈Ri

j

y(R,F ) ≥ dij ∀j ∈ J i, i ∈ I. (14)

A solution y of this system means that a realized path (R,F ) is used at
throughput y(R,F ) in our realized routing. By the �rst constraint we make sure
that y comes from a realization of x, and by the second constraint we satisfy
all the demands.

In order to demonstrate that the model of MMFP is meaningful, we should
show that feasible solutions can be realized with a routing of normal com-
modities using realization of paths, as de�ned above. The following Lemma is
a formal statement of this claim.

Lemma 1 Given a solution x ∈ RP+ of (10)-(12), there is a solution y of (13)-
(14). Also, given x one can determine a solution y of (13)-(14) in polynomial
time.

In order to prove this lemma we de�ne acyclic solutions.

2.2.1 Acyclic solutions

De�nition 2 A feasible solution x of (2)-(6) is an acyclic solution if there is a
linear order ≺ on J∪K such that if l ∈ J∪K, xl(a) > 0, and a is a contractual
arc, then l ≺ ka. Similarly, a feasible solution of (8)-(12) is an acyclic solution
if there is a linear order ≺ of supp(x) such that for any P ∈ supp(x) and any
contractual arc a ∈ P ∩B we have P ≺ P ′ for every P ′ ∈ Pia

ka
∩ supp(x).

De�nition 3 For a feasible solution x of (8)-(12) we de�ne the following edge-
weighted directed graph Dx. The node set of Dx is J ∪K∪supp(x). The nodes
in supp(x) have in-degree 1: the only arc entering a path P ∈ supp(x) ∩ Pi

l

comes from node l (where i ∈ I and l ∈ J i ∪Ki) and this arc has weight xP .
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The arcs leaving this path P go to the nodes ka ∈ K for every a ∈ P ∩B (i.e.
the out-degree of P is zero if and only if P is a normal path) and these arcs
have weight daxP . Note that if l ∈ J then l is not the head of any arc, and the
digraph Dx is bipartite with color classes J ∪K and supp(x). Observe that x
is acyclic if and only if this digraph is acyclic.

Proposition 1 If x is a feasible solution of (8)-(12), then there is an acyclic
solution x∗ such that x∗ ≤ x.

Proof Suppose indirectly that the nodes P1, ka1
, P2, ka2

, . . . , Pm, kam
form a

cycle in Dx (in this order). Let x′ := x − ε
∑m

i=1 χ{Pi} with ε maximum to
maintain the non-negativity of x′. We claim that x′ is a feasible solution of
(8)-(12). Clearly, (8)-(10) holds for x′ too, since 0 ≤ x′ ≤ x. (11) follows
from the fact that x′|Pi

j
= x|Pi

j
for every i ∈ I and j ∈ J i, since a cycle

does not contain nodes in J . Note that (12) states that at any node ka ∈ K,
the sum of the weights of the arcs leaving the node ka is at least the sum of
the weights entering this node. Observe that Dx′ can be obtained from Dx

by appropriately decreasing the weights of every arc entering or leaving the
nodes P1, P2, . . . , Pm (and deleting the nodes in supp(x) − supp(x′)). If ka is
not in our cycle for some a ∈ B then the weight of the arcs leaving ka did not
decrease (while the weight of those entering ka might have decreased) therefore
(12) also holds for x′ and a. On the other hand, if ka is in the cycle for some
a ∈ B, then the weight of exactly one arc leaving ka decreased by ε and at
least one arc entering ka has had its weight decreased by daε. Since da ≥ 1,
this shows that (12) also holds for x′ and a. Thus indeed x′ is a solution to
(8)-(12).

Since supp(x′) ( supp(x), by induction on supp(x) there is an acyclic
solution x∗ ≤ x′ ≤ x, proving the claim. It is also clear that this solution x∗

can be found in polynomial time. ut

Corollary 1 The social optimum is always achieved by an acyclic solution.
ut

Proposition 2 An acyclic solution can be decomposed into realized paths.

Proof Suppose that x is a counterexample with |supp(x)| +
∑

i |J i| minimal.
Consider the digraph Dx and choose an arbitrary node j ∈ J i (where i ∈ I)
and an arbitrary path P ∈ Pi

j . A realization (R,F ) of P can be de�ned
the following way: in every step the successors of a node Q should be chosen
from supp(x) (equivalently, this could be obtained from a subgraph of Dx by a
suitable contraction). Since x is feasible, this can be done, and since x is acyclic,
this will indeed give a realization of P . Then we de�ne x′P := xP − εd(R,F )(P )
if P ∈ R, and x′P := xP if P /∈ R, and d′ij := dij − ε, and d′ef := def for
(e, f) 6= (i, j). Choose ε to be maximal such that d′ and x′ remain non-negative.
We remove j from J i if d′ij becomes zero. Then x′, d′ is not a counterexample
because of the minimality of x, hence there is a solution y′ of (13)-(14) with
respect to x′, d′. Consequently, y := y′+ εχ(R,F ) is a solution of (13)-(14) with
respect to x, d. ut
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Remark. The proof works with nonlinear functions with the assumption
fa(x) ≥ x, too. In this case (12) can be nonlinear, i.e.,

∑
P∈Pia

ka

xP ≥ fa

( ∑
P∈Pi:a∈P

xP

)
∀a ∈ Bi, i ∈ I.

Of course, we need restrictions on the functions fa in order to be able to
compute a realization in polynomial time as in Lemma 1.

Remark. The analogue of Corollary 1 for equilibria is not true: it is pos-
sible that there are equilibrium solutions but none of them is acyclic.

Remark. In case of da < 1, simple (and safe) counterexamples to Lemma
1 (in fact, to Claim 1) exist. Such an example was given in Subsection 1.2.

3 Calculating the social optimum

Our aim is to �nd the social optimum: a feasible solution which is optimal for
the cost function c. We have seen that this can be written as an LP of polyno-
mial size, so it can be solved in polynomial time. In practice, the running time
can be dramatically reduced by the use of suitable solution methods: column
generation and Lagrangian relaxation. This section introduces the solution
algorithms suited to MMFP.

3.1 Column generation

In the following, we describe a column generation method based on the method
of Ford and Fulkerson [5] to solve the problem. Let problem (7)-(12) be called
the master LP. The column generation method takes a subset of paths, and
solves the LP restricted to the variables corresponding to those paths. Then
it checks whether the dual solution obtained is feasible for the master LP. If
it is, then the primal solution is optimal for the master LP. If it is not, we can
�nd a variable for which the corresponding dual inequality is violated, and we
can add this variable to the restricted LP.

The crucial question is how to �nd a dual inequality that is violated, since
there are exponentially many inequalities. We show that in our problem it is
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easy. First we describe the dual problem.

max
∑
i∈I

∑
j∈Ji

dijz
i
j −

∑
i∈I

∑
a∈Ai

uaya (15)

y ∈ R
∑

i∈I |A
i| (16)

z ∈ R
∑

i∈I |J
i|+

∑
i∈I |B

i| (17)

y, z ≥ 0 (18)

zij −
∑

a∈(Ai\Bi)∩P

ya −
∑

a∈Bi∩P

(ya + daz
i
a) ≤ c(P ) ∀P ∈ Pi

j , j ∈ J i,

∀i ∈ I,
(19)

zia −
∑

a′∈(Aia\Bia )∩P

ya′ −
∑

a′∈Bia∩P

(ya′ + da′ziaa′ ) ≤ c(P ) ∀P ∈ Pia
ka
, a ∈ Bi,

∀i ∈ I.
(20)

Suppose that we have a dual vector (y∗, z∗), and we want to decide if it is
feasible, so we have to check inequalities (19) and (20). In order to �nd a path
P ∈ Pi

j that violates (19), we have to �nd the shortest path from the source to

the sink of the commodity j ∈ J i relative to the non-negative length function
la = y∗a + ca for a ∈ Ai\Bi and la = y∗a + daz

i∗
a + ca for a ∈ Bi. If the length

of the shortest path is less than zi∗j , then we have found a path for which (19)

is violated, otherwise there is no such path in Pi
j .

For P ∈ Pia
ka
, we have to solve a similar problem with length function

la′ = y∗a′ + ca′ for a′ ∈ Aia\Bia and la′ = y∗a′ + da′zia∗a′ + ca′ for a′ ∈ Bia . To
sum up, we can test the feasibility of (y∗, z∗) by running the Dijkstra algorithm
|J |+ |K| times.

3.2 Lagrangian relaxation

Consider the arc-�ow formulation. Let us relax the capacity constraints (2) and
assign to them the dual variable vector y ≥ 0. The Lagrangian dual problem
is

max
y≥0
L(y),
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where L(y) is de�ned as the optimum of

min L(x, y) (21)

N ixj = dijδ
j ∀j ∈ J i, ∀i ∈ I, (22)

N iaxka = da

∑
j∈Ji

xja +
∑
k∈Ki

xka

 δa ∀a ∈ Bi, ∀i ∈ I, (23)

xj ≥ 0 ∀j ∈ J i, ∀i ∈ I, (24)

xka ≥ 0 ∀k ∈ Ki, ∀i ∈ I, (25)

and L(x, y) is the Lagrangian function

L(x, y) =
∑
i∈I

∑
a∈Ai

ca

∑
j∈Ji

xja +
∑
k∈Ki

xka

+
∑
i∈I

∑
a∈Ai

ya

∑
j∈Ji

xja +
∑
k∈Ki

xka − ua

 .

Because the Lagrangian dual is the minimum of linear forms in y, it is concave.
Moreover, it is possible to exhibit an element of the anti-subgradient at ȳ if
we know an optimal solution x̄ of (21)-(25) at ȳ. Indeed, for any y, we have
from the de�nition of L,

L(y) ≤
∑
i∈I

∑
a∈Ai

ca

∑
j∈Ji

x̄ja +
∑
k∈Ki

x̄ka

+
∑
i∈I

∑
a∈Ai

ya

∑
j∈Ji

x̄ja +
∑
k∈Ki

x̄ka − ua

 .

(26)
Inequality (26) clearly shows that −u+ x̄j + x̄k is an anti-subgradient. Inequal-
ity (26) is sometimes referred to as an optimality cut for L.

The Lagrangian function can be converted into the following form:

L(x, y) = −
∑
i∈I

∑
a∈Ai

yaua +
∑
i∈I

∑
a∈Ai

(ca + ya)

∑
j∈Ji

xja +
∑
k∈Ki

xka

 .

Hence, for any y ≥ 0, problem (21)-(25) can be considered as an MMFP on
the same Di = (V,Ai), i ∈ I, with costs ca + ya, a ∈ ∪i∈IAi and without
capacity constraints (i.e. ua = +∞, a ∈ ∪i∈IAi).

The solution of the MMFP without capacity constraints can be carried
out in the following way. It is easy to see that without contractual arcs, prob-
lem (21)-(25) is separable into shortest-path problems from the source to the
sink of the commodity j in J i relative to the non-negative length function
la = ca + ya for a ∈ Ai, i ∈ I. In case of the existence of contractual arcs two
kinds of demands have to be considered: the normal and the contractual. How-
ever, Lemma 1 says that there are normal realizations behind the contractual
arcs. Hence, if we know the minimal cost of a realization of one unit of �ow
on a contractual arc a ∈ Bi (let us denote it by na), then problem (21)-(25)
can be considered as shortest-path problems from the source to the sink of the
commodity j in J i relative to the non-negative length function la = ca + ya
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for a ∈ Ai\Bi and la = ca + ya + na for a ∈ Bi, i ∈ I. In order to �nd na for
all a ∈ ∪i∈IBi we apply the following

Dynamic programming algorithm to �nd the minimal cost of a re-

alization of one unit of �ow on a contractual arc

Step 0. Let na(0) = +∞ for all a ∈ ∪i∈IBi. Let k = 0.

Step 1. Let na(k + 1) = min(na(k), dal(Pa(k))) for all a ∈ ∪i∈IBi, where
l(Pa(k)) is the length of the shortest path between the tail and head of
a in Dia = (V,Aia) with arc-lengths la = ca + ya for a ∈ Aia\Bia and
la = ca + ya + na(k) for a ∈ Bia .

Step 2. If na(k + 1) = na(k) for all a ∈ ∪i∈IBi then STOP. Else k ← k + 1
GOTO Step 1.

Theorem 1 The algorithm stops within at most
∑

i∈I |Bi|+ 1 iterations.

Proof Corollary of Lemma 1. ut

By the use of the above method the values as well as the anti-subgardients
of the concave function L(y) can be calculated. Hence, several algorithms exist
to �nd the maximum of it. For example, the the analytic center cutting-plane
method (ACCPM) of [7] can be applied.

As a consequence, we can solve MMFP using slight modi�cations of mul-
ticommodity �ow algorithms based on Lagrangian relaxation. In particular,
the algorithm of [2], which uses partial Lagrangian relaxation with proximal-
ACCPM (see [9]) can be easily converted into an algorithm for MMFP, the
only di�erence being the computation of L(y), as detailed above.

4 Results on equilibria

Equilibrium solutions, de�ned in Subsection 1.2, are solutions where no player
has the intention to change the routing in his network. In this section we show
that in general it is NP-complete to decide if an equilibrium solution exists,
while in safe instances there always exists one. However, even in safe instances
the social cost of equilibria can be arbitrarily high, and it is NP-complete to
decide if there is one with social cost smaller than C.

4.1 Existence of equilibrium solutions

In this subsection we show that an equilibrium solution always exists in a
safe instances, even under the very weak assumption that the functions fa are
continuous and monotone increasing.

Theorem 2 In a safe instance of the problem there is always an equilibrium
solution.
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Proof As before, let A be the set of all arcs, B the set of all contractual arcs,
and let

Q = ×a∈B [0, ua],

i.e. Q is the space of all possible �ow values on contractual arcs. Q is a com-
pact convex set in RB . Since contractual demands are determined by the �ow
values on contractual arcs, we can associate to an element x ∈ Q a set of all
(contractual plus normal) demands Dem(x).

We de�ne a set-valued function φ : Q → P(Q) the following way. For
x ∈ Q, we consider the demands Dem(x), and take the direct sum of the
polyhedra of all minimum cost multicommodity �ows (w.r.t. cost function c
for normal arcs and c+p for contractual arcs) for each player. Let φ(x) be the
projection of this polyhedron to the coordinates corresponding to contractual
arcs. In other words, φ(x) contains all vectors on B that arise as arc values of
minimum cost multicommodity �ows for demands Dem(x).

It is clear that φ(x) is closed and convex for every x, since it is a polyhedron.
We show that φ is upper semi-continuous, i.e. its graph is closed. Let xi ∈ Q
(i ∈ N) be a convergent sequence, xi → x ∈ Q. Let furthermore yi ∈ φ(xi)
(i ∈ N) such that yi → y ∈ Q. For yi, let yi ∈ RA be a minimum cost
multicommodity �ow for demands Dem(xi) whose restriction to B is yi. By
the standard argument, we can select a subsequence i1, i2, . . . so that yij (a)
is convergent for every a ∈ A. Let y denote the limit. Since the functions fa
(a ∈ B) are continuous and the multicommodity �ow problem is linear, y is
a minimum cost multicommodity �ow for demands Dem(x). This proves that
y ∈ φ(x).

By Kakutani's �xed point theorem [8], there is an element x∗ ∈ Q such
that x∗ ∈ φ(x∗). This means that for demands Dem(x∗), there are minimum
cost multicommodity �ows for each player with contractual arc values equal
to x∗. This corresponds to an equilibrium solution. ut

4.2 NP-completeness

Let us de�ne an auxiliary directed graph D∗ = (I, A∗) on the set of players.
There is an arc from i to ia for each contractual arc a ∈ B. We allow parallel
arcs, so |A∗| = |B|. We say that the contracts are acyclic if D∗ is acyclic.

We know that in a safe instance there is always an equilibrium solution.
In contrast, the following result shows that for non-safe instances it is hard to
decide if there is an equilibrium.

Theorem 3 In general it is NP-compete to decide whether there is an equilib-
rium solution. This holds even if the contracts are acyclic and the instance is
almost safe in the sense that there is only one contractual demand that cannot
be routed.

Proof We reduce SAT to this problem. Suppose there are m clauses and n
variables x1, x2, . . . , xn. We construct an instance with n+ 2 players: the �rst
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n players correspond to variables, the network of the (n+ 1)-th player models
the clauses, and the (n + 2)-th player is a dummy player with no arcs in his
network. We show that the instance has an equilibrium solution if and only if
the SAT instance is satis�able.

The j-th player (j = 1, . . . , n) has a normal demand of one unit from uj to
vj and his network contains two disjoint paths from uj to vj , one corresponding
to xj , the other to xj . These paths contain several contractual arcs: one for
each clause in which xj (resp. xj) appears. The contractor for these arcs is the
(n+ 1)-th player. All costs are 0 and all capacities are 1.

The (n + 1)-th player has m normal demands of one unit, one for each
clause. The i-th demand is from si to ti, and there is a normal arc from si to
ti with high cost and unit capacity. In addition, for each i ∈ {1, . . . ,m} there
is a path from si to ti with cost 0 and unit capacity, and these paths share a
single arc st (but apart from the nodes s and t they are node-disjoint). The
arc st is a contractual arc with the (n+ 2)-th player, who has no s− t path in
his network, so this contract cannot be realized.

All the contractual demands of the (n+ 1)-th player lie on these paths: for
all literals in clause i, the contractual demands corresponding to the literals
cover disjoint sections of the path (not containing st).

In an equilibrium solution, the (n + 1)-th player must route his normal
demands on the high-cost si − ti arcs, because the low-cost paths contain
an unrealizable contract. By the de�nition of equilibrium, he must have a
minimum cost multicommodity �ow in his network, which means that all the
low cost paths must contain an arc saturated by the �ow corresponding to a
contractual demand, i.e. there must be a contractual demand of value 1 on
each low cost path. This means that the �ows of the �rst n players must be
paths that correspond to an evaluation that satis�es every clause.

To see the other direction, consider an evaluation that satis�es every clause.
This de�nes an equilibrium solution the following way. The j-th player (j =
1, . . . , n) routes his normal demand on the path corresponding to xj if xj is
true in the evaluation, and on the path corresponding to xj if it is false. The
(n+1)-th player routes his normal demands on the high-cost si−ti arcs. It can
be seen by the same argument as above that this is an equilibrium solution.

ut

Remark. A similar proof shows that in a safe instance it is NP-complete
to decide if there is an equilibrium solution with social cost smaller than C,
even if the contracts are acyclic. The only modi�cation is that the �high cost�
in the construction above should be small compared to C, and a normal arc
st of cost C and capacity m should be added to the network of the (n+ 2)-th
player.
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