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1 The Lucchesi-Younger theorem

Let D = (V,E) be a directed graph, so that the underlying undirected graph is connected. A set of
edges entering a set X is called a directed cut, if it has only incoming arcs, that is, δ(X) = 0. X is
called the in-shore of the cut. A directed cut cover or dijoin is a set F of arcs containing at least
one arc from each directed cut.

It is easy to see that contracting the arcs in a dijoin results in a strongly connected digraph. The
following property is less obvious.

Claim 1.1 (F Prop 9.7.1). Let D = (V,E) be a digraph, and assume the underlying undirected graph
is 2-EC. Let F be a dijoin of D minimal for containment. Then reorienting every arc in F yields a
strongly connected orientation.

Two directed cuts are disjoint, if they have no arcs in common. (Yet the in-shores may intersect.
For example, given a star with nodes t, v1, . . . , vk and arcs vit, each arc vit forms a directed cut with
in-shore V − {vi}. These cuts are pairwise disjoint.)

Theorem 1.2 (Lucchesi, Younger, F Thm 9.7.2). The minimum cardinality τ = τ(D) of a dijoin
equals the maximum number ν = ν(D) of pairwise disjoint directed cuts.

The proof in F, given by Lovász, uses uncrossing of directed cuts. The theorem also has a minimum
cost version.

Theorem 1.3 (F Thm 9.7.4). Let us be given a cost function c : E → R+ on the directed graph
G = (V,E). The minimum cost of a dijoin equals the maximum number of directed cuts so that each
arc e is contained in at most c(e) directed cuts.

This can be obtained from the unweighted theorem by replacing every edge e by a path of length
c(e).

We shall exhibit a combinatorial algorithm for the (unweighted) Lucchesi-Younger theorem. For
this, we need some prerequisites.
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1.1 Detour: conservative weightings

Theorem 1.4. Let D = (V,E) be a directed graph with a cost function c : E → R. Then either there
exists a negative cost cycle in E, or there exists a potential π : V → R with π(v) − π(u) ≤ c(uv) for
every uv ∈ E.

The proof is given by the following simple dynamic programming algorithm. For k = 0, . . . , n, let
πk(v) denote the minimum cost of a walk containing at most k edges, terminating in v. This can be
computed by π0 ≡ 0,

πk+1(v) = min{0, min
uv∈E

c(uv) + πk(u)}.

If there exists a node v with πn−1(v) > πn(v), the graph contains a negative cycle. Otherwise,
π(v) = πn(v) = πn−1(v) is a good potential.

If there is no negative cycle (and thus exists a good potential), then c is called a conservative
cost function.

1.2 Algorithmic proof of the Lucchesi-Younger theorem (F Section 9.7.2)

In an undirected graph G = (V,E) and a subset X ⊆ V , let σ0(X) denote the number of components
of G−X.

Claim 1.5 (F Prop. 1.2.6).

σ0(X) + σ0(Y ) ≤ σ0(X ∩ Y ) + σ0(X ∪ Y ) + dG(X,Y ) ∀X,Y ∈ V.

Proof. Induction on |V | + |E|. X ∩ Y can be deleted without modifying any term in the inequality,
hence we may assume X ∩ Y = ∅. Similarly, any arc induced in X, Y and in V − (X ∪ Y ) can be
contracted. Deleting an arc between X and Y does not change the LHS. On the RHS, dG(X,Y )
decreases by 1, σ0(X ∪ Y ) does not change, and σ0(X ∩ Y ) increases by at most 1. Hence we may
apply induction. Similar analysis works for the deletion of edges between X ∪Y and V − (X ∪Y ).

Let D = (V,E) be the directed graph where we want to find a minimum dijoin. Assume we are
given a dijoin F . Either we want to show that it is minimal or we want to find a smaller one.

For a directed cut X (δ(X) = 0), let σ0(X) denote the undirected connected components of D−X
as above. Let σ(X) = σ0(X) if X 6= ∅ and σ(∅) = 0.

For a dijoin F , ρ(X) ≥ σ(X) must hold. X is tight if this holds with equality.

Claim 1.6. If X and Y are directed cuts, X ∩ Y 6= ∅, then X ∩ Y and X ∪ Y are also directed cuts.
If X and Y are tight, then also X ∩ Y and X ∪ Y are tight.

Consequently, if v ∈ V is contained in any tight directed cut, then there exists a unique minimal
tight T (v) containing v.

Let us define the directed graph D′ = (V,A) with a cost function c as follows. Let us add every
edge uv ∈ E to A with cost 1, and for every uv ∈ F , let us add vu with cost −1. Furthermore, add
an edge uv with cost 0 whenever u ∈ T (v).

If this weighting is conservative, then the potential π helps to identify |F | disjoint directed cuts.
If it is not, then changing F around an appropriately chosen negative cycle gives a smaller dijoin (see
F).
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