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All proofs covered in the lectures not included in the notes can be found in the book.

1 Representations of minimum cuts

Let λ(G) denote the edge-connectivity of the undirected graph G, that is, λ(G) = k if G is k-edge-
connected but not k+ 1-connected. X is called a minimum cut, if d(X) = k. X and V −X define the
same cut. If X or V −X is a singleton, then it is called a trivial minimum cut, otherwise a proper
min-cut. Minimum cuts will also be refered here as tight sets.

Two sets X,Y ⊆ V are called crossing if all four sets X − Y , Y −X, X ∩ Y , V − (X ∪ Y ) are
nonempty. Note that if X and Y are crossing, then so are X and V − Y . Let d(X,Y ) and d̄(X,Y )
denote the number of edges between X − Y and Y − X, and between X ∩ Y and V − (X ∪ Y ),
respectively.

Claim 1.1 (F Prop. 7.1.1). If X and Y are crossing tight sets, then X ∩Y , X ∪Y , X−Y and Y −X
are also tight. Furthermore, d(X,Y ) = d̄(X,Y ) = 0.

An easy consequence is that if k is odd, then there are no crossing tight sets, and therefore all
tight sets admit a simple tree representation.

Theorem 1.2 (F Thm. 7.1.2). If λ(G) is odd, then there exists a tree H = (U,F ) and a mapping
ϕ : V → U such that for any e ∈ F , the pre-images of the two components of H− e define a minimum
cut, and conversely, every minimum cut can be obtained in this form.

Such a structure cannot be given for even λ(G). For example, a cycle for k = 2 contains a minimum
cut corresponding to every pair of edges. Cycles turn out to give a canonical example for even k.

Lemma 1.3 (F Lem. 7.1.3). Assume k = λ(G) is even. Assume every proper minimum cut is crossed
by another proper minimum cut. Then G can be obtained from a circuit by replacing every edge by
k/2 parallel edges.

The 2-edge-connected, loopless graph H = (U,F ) is called a cactus, if every 2-node-connected
block is a cycle. Equivalently, H is a cactus if every edge is contained on exactly one cycle. Further
equivalently, H is a cactus if it can be obtained from a cycle by a sequence of two operations: (i) add
a new node, and connect it to an old node by 2 parallel edges; (ii) subdivide an edge by a new node.
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Theorem 1.4 (Dinitis, Karzanov, Lomonosov, F 7.1.8). Let λ(G) = k be even. Then there exists a
cactus H = (U,F ) and a mapping ϕ : V → U such that there is a one-to-one correspondence between
the minimum cuts of G and H. That is, for any e, f ∈ F contained in the same cycle, the pre-images
of the two components of H − {e, f} form a minimum cut in G, and every minimum cut in G can be
obtained this way.

The proof in F, given by Frank and Fleiner, uses induction by contracting proper min-cuts not
crossed by any proper min-cuts. If no such proper min-cut exists, then Lemma 1.3 can be applied.

2 Gomory-Hu trees

Let G = (V,E) be a connected undirected graph, and g : E → R+ a capacity function. For a pair of
nodes u, v ∈ V , let λg(u, v) denote the maximum number of edge-disjoint path between u and v under
the capacity g. By Menger’s theorem, λg(u, v) = minu∈X,v/∈X dg(X). An X giving the minimum here
is called uv-critical. (dg(X) =

∑
x∈X,y/∈X g(xy).)

A tree T = (V, F ) on the same node-set is called a Gomory-Hu tree for G if it satisfies the
following properties. For each edge e ∈ F , let m(e) = dg(Xe), where Xe is either component of T − e.
We require that for every pair of nodes u, v ∈ V , λg(u, v) is the minimum m(e) value on the unique
uv-path in T , and for the edge e giving the minimum, Xe is uv-critical.

Theorem 2.1 (Gomory, Hu, F Thm 7.2.2). Every graph G = (V,E) posesses a Gomory-Hu tree, that
can be found by n− 1 max flow computations.

See the algorithmic proof in F. The existence of a Gomory-Hu tree implies that there exist a set
of n− 1 sets containing a uv-critical set for every pair u, v ∈ V , and gives a concise representation of
such sets.

2.1 Application: minimum k-cuts

Given a graph G = (V,E) and a cost function w : E → R+, our aim is to find a set of edges J
minimizing w(J) so that G − J has at least k-connected components. The problem is NP-complete.
The following simple approximation algorithm was given by Saran and Vazirani: construct a Gomory-
Hu tree (with capacities g ≡ w), and pick the k− 1 lightest edges (w.r.t. m) of T . The corresponding
edge set J ⊆ E achieves a factor 2− 2/k.

To see this, first let us verify that G− J has at least k components. Let L ⊆ F be the set of the
k − 1 lightest edges of T . Then T − L has k − 1 components, and J is the set of all edges between
these components in G.

Let J0 be the optimal k-cut, with G−J0 containing partition classes V1, V2, . . . , Vk (we may assume
that an optimal solution contains exactly k sets). Then 2w(J0) =

∑k
i=1 dw(Vi). W.l.o.g. assume that

Vk is the component maximizing dw(Vi). Then

(2− 1

k
)w(J0) ≥

k−1∑
i=1

dw(Vi).

We shall proof that w(J) is at most the RHS. Indeed, contract all set Vi into single nodes, and let
L0 be a spanning tree in the contraction of the Gomory-Hu tree T . Let us designate the contraction
of Vk as the root node, and orient all edges of L0 towards the root. By the minimal choice of T0,
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w(J) = m(L) ≤ m(L0). We claim that m(L0) is at most the RHS. Indeed consider L0 as a subset of
the original Gomory-Hu tree. For each Vi, i < k, there is exactly one edge xiyi ∈ L0 leaving Vi with
xi ∈ Vi, yi /∈ Vi. By the definition of the Gomory-Hu tree, the minimum cut value between xi and yi
is at least m(xiyi), and since Vi is an xiyi-cut, m(xiyi) ≤ w(Vi). Hence the claim follows.

3 Sparse certificates for connectivity

3.1 Directed edge-connectivity

The directed graph D = (V,E) with root node r ∈ V is called rooted k-edge-connected, if for every
v ∈ V − r, there exists k edge-disjoint directed paths from r to v. Equivalently, ρ(X) ≥ k for every
r /∈ X ( V . As a generalization, D is called (k, `)-edge-connected, if for every v ∈ V −r, there exists k
edge-disjoint directed paths from r to v, and ` edge-disjoint directed paths from v to r. Equivalently,
ρ(X) ≥ k and δ(X) ≥ ` for every r /∈ X ( V . Observe that a graph is (k, k)-EC if and only if it is
k-EC.

By the following lemma, all minimal k-EC connected graphs have precisely k(n− 1) edges.

Lemma 3.1 (F Lem 7.4.1). Let D = (V,E) is minimally rooted k-EC with root node r ∈ V . Then
ρ(v) = k for every v 6= r.

Since a minimally rooted (k, `)-EC graph is a (not necessarly disjoint) union of a min. rooted
k-(out-)connected and a min. rooted `-(in-)connected graph, it follows that

Theorem 3.2 (F Thm 7.4.3). A minimally (k, `)-EC directed graph has at most (k+ `)(n− 1) edges.
Consequently, a minimally k-EC graph has at most 2k(n− 1)-edges.

The above bound is sharp for every pair (k, `): take a star, with the central node connected to
everyone else by k out- and ` in-edges.

3.2 Undirected edge-connectivity

The bounds on directed graphs immediately give bounds on minimal k-EC undirected graphs.

Claim 3.3 (F Thm 7.5.3). A minimally k-EC undirected graph has a most k(n− 1) edges.

The proof follows by the observation that if we direct all edges in both directions in a minimally
k-EC connected undirected graph, then we get a min k-EC directed graph. As we shall see, this bound
is not sharp.

By a maximal forest decomposition of the graph G = (V,E), we mean the partition of E into
forests F1, F2, . . . , Ft such that F1 is an (arbitrary) spanning forest in G, F2 is a spanning forest in
G− F1, Fi is a spanning forest in G− ∪j<iFj . Let Ek = F1 ∪ . . . ∪ Fk denote the union of the first k
forests.

Claim 3.4 (F Prop. 7.5.4). For any set X ⊆ V , dEk
(X) ≥ min{k, dE(X)} for a maximal forest

decomposition.

This immediately implies

Theorem 3.5 (Nishizeki, Polyak, F Thm 7.5.5). If G is k-EC, then (V,Ek) is also k-EC.
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This gives an efficient algorithm to identify a small certificate of k-edge-connectivity. Yet it is not
true that in a k-EC graph there exist k spanning trees such that the paths between u and v in the k
trees yield k edge-disjoint paths.

Since the forest decomposition is arbitrary, we can start with F1 containing all edges incident to a
certain node v1, F2 containing all edges in G − F1 of v2, etc. This implies that |Fi| ≤ n − i, and the
following strengthening of Claim 3.3 follows.

Theorem 3.6 (Mader). A minimal k-EC graph has at most kn−
(
k
2

)
edges.

3.3 Scan First Search decompositions

Let us now define a restricted class of forest decompositions. To find a spanning forest, we apply the
following generic Scan First Search (SFS) algorithm.

In the undirected graph G = (V,E), nodes are sorted into three classes: scanned (S), marked
(M) and undiscovered (U). In each step we maintain a forest F . The algorithm starts with U = V ,
S = M = ∅. We start by picking an arbitrary node s ∈ U , and move it to S. We add all neighbours v
of s to M , and add all edges vs to the forest F . This step is repeated by picking an arbitrary s ∈ U
if M = ∅, and a node s ∈M otherwise.

The SFS algorithm always returns a spanning forest. Note that BFS is a special implementation
of SFS, but DFS is not. For a running of the SFS algorithm, by the corresponding ordering we mean
the order in which the nodes are being scanned. Orderings that can be obtained for some running of
the SFS algorithm are called scan-first orderings.

In general, let v1, v2, . . . , vn be an ordering of the nodes of G = (V,E). We say that this ordering
is contiguous if every component C of G is an interval in the ordering, that is, if i < j < k and
vi, vj ∈ C, then vk ∈ C. Furthermore we require that if vj is not the first node of a component C,
then there exists an edge vivj ∈ E with vi < vj .

Observe that Max Adjacency (MA) orderings, defined in Lec. 4, are all contiguous orderings.
Moreover, it can easily be seen that every scan-first ordering is contiguous.

The converse of this statement is also true. With a contiguous ordering, we can associate a forest
by connecting every node vj to the first node vi with vivj ∈ E, i < j if there is any. We call this the
forest decomposition belonging to the ordering.

Claim 3.7 (F Thm. 7.5.1). Scan-first orderings are the same as contiguous orderings.

A useful property of MA-orderings is the following.

Claim 3.8 (F Prop. 7.5.2). If v1, . . . , vn is an MA-ordering of G, and F is the associated tree, then
v1, . . . , vn is also an MA ordering for G− F .

3.4 Node-connectivity

The undirected graphG = (V,E) is called k-node-connected (k-NC) between u, v ∈ V , ifG contains
k internally node disjoint paths between u and v. The most convenient way for dual characterization
is in terms of set pairs. Let us call (X,Y ) a set pair, if X,Y 6= ∅, and X ∩ Y = ∅. Let w(X,Y ) =
|V − (X ∪ Y )| denote the number of node outside both sets. Then G is k-NC between u and v, if
w(X,Y ) + d(X,Y ) ≥ k for every set pair (X,Y ) with x ∈ X, y ∈ Y . G is k-NC, if it is k-NC between
every pair of nodes u, v ∈ V .

4



Exercise 3.9. If |V | ≥ k + 1, then G is k-node-connected if and only if w(X,Y ) ≥ k for all set pairs
with d(X,Y ) = 0. Equivalently, |N(X)| ≥ k − 1 whenever X 6= ∅, X ∪N(X) 6= V .

We shall prove that an appropriate maximal forest decomposition gives a witness to k-edge-
connectivity as well. By an SFS decomposition of a graph we mean a maximal forest decomposition
obtained by SFS-algorithms.

Theorem 3.10 (Even, Itkis, Rajsbaum, F Thm 7.5.7-7.5.9). If G = (V,E) is k-node-connected, and
F1, F2, . . . , Fk is an SFS-decompostion, then (V,Ek) is also k-node-connected, where Ek = F1∪. . .∪Fk.

This will immediately prove that Theorem 3.6 is also true for node-connectivity:

Theorem 3.11 (Mader, F Thm 7.5.9.). A minimal k-NC graph has at most kn−
(
k
2

)
edges.

Claim 3.8 gives an efficient way to compute a wittness for k-node-connectivity: compute an MA
ordering v1, . . . , vn (this can be done in O(m) time). Let us connect every vj to its first k neighbours
v` with ` < j if there is at least k of them, and to all such neighbours if there are less then k. This
gives precisely the set Ek.

Theorem 3.10 will follow from the next lemma:

Lemma 3.12 (F Thm 7.5.7). Let G = (V,E) be an arbitrary graph with SFS decomposition F1, . . . , Ft,
and let Ek = F1 ∪ . . .∪Fk. If u and v are in the same component of Fk, then (V,Ek) is k-NC between
u and v.

Proof. We shall prove by induction on k. The theorem is trivial for k = 1. Let J = F2 ∪ . . . ∪ Fk and
G′ = G− F1.

For k > 2, we shall prove w(X,Y ) + dEk
(X,Y ) ≥ k for every (X,Y ) with x ∈ X, y ∈ Y . If

dF1(X,Y ) > 0, then by the induction hypothesis for G′ and J , w(X,Y ) + dJ ≥ k− 1, hence the claim
follows as dEk

≥ dJ > 1.
Assume now dF1(X,Y ) = 0. Let v1, . . . , vn be the order in which nodes were scanned in SFS

algorithm giving F1. W.l.o.g. we may assume v1 /∈ X. Let vj be the first node with vj ∈ V − (X ∪Y ).
We claim that dG′(vj , X) = 0. Indeed, when vj was scanned, all edges connected vj to unprocessed
nodes are added to F1, including all edges going to X.

Let Y ′ = Y ∪ {vj}. By induction, w(X,Y ′) + dJ(X,Y ′) ≥ k − 1. Since w(X,Y ′) = w(X,Y ) − 1,
and dJ(X,Y ′) = dJ(X,Y ), the claim follows.

Proof of Theorem 3.10. We need to prove w(X,Y ) + dEk
(X,Y ) ≥ k for all set pairs (X,Y ). If Fk has

a component intersecting both X and Y , this is guaranteed by the lemma above. Otherwise, we claim
that dEk

(X,Y ) = dG(X,Y ), and thus the claim follows as G is k-NC. Indeed, if Fk does not connect
nodes in X and Y , and there exists an edge xy ∈ E − Ek with x ∈ X, y ∈ Y , then we could have
added xy to Fk, a contradiction.

Let κG(u, v) denote the maximum number of node disjoint paths in G between u and v.

Theorem 3.13 (F Thm 7.5.10). If v1, . . . , vn is an MA ordering of G, then κ(vn−1, vn) = d(vn).

An important consequence is this:

Theorem 3.14 (Mader, F Thm 7.5.11). Every minimally k-NC graph has a node of degree exactly k.
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3.5 Constructive characterization of chordal graphs

Let us give a different application of MA-orderings. An undirected graph G = (V,E) is called chordal,
if every cycle of length at least four has a chord, that is, an edge connecting two nodes not adjacent
on a cycle. The following theorem gives a constructive characterization of chordal graphs, providing
an NP-certificate of this property.

Theorem 3.15 (Dirac, F Thm 7.5.13). G is chordal if it can be obtained from a single node by the
following operation: add a new node, and connect it to the nodes of a clique.

Tarjan and Yannakakis proved that if G is chordal, then an MA-ordering provides such a construc-
tion sequence (F Thm 7.5.14).
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