Strongly polynomial algorithms and generalized flows Problem set 1

Summer School on Combinatorial Optimization Hausdorff Center for Mathematics August 2018

Exercise 1.1 Consider an instance of the minimum-cost flow problem in the capacitated form

$$
\min c^{\top} f
$$

\n
$$
\nabla f_i = b_i \quad \forall i \in V
$$

\n
$$
0 \le f \le u.
$$
\n(1)

with n nodes and m arcs. Show that it can be replaced by an equivalent uncapacitated instance (where all upper capacities are ∞) in a network of $n + m$ nodes and $2m$ arcs.

Exercise 1.2 Show that the existence of a feasible solution to (1) can be decided by a maximum flow computation. Derive Hoffman's circulation theorem for uncapacitated flows (Theorem 1.4 in the lecture notes) from the MFMC theorem.

Exercise 1.3 Consider a directed graph $G = (V, E)$, and $p, b : V \to \mathbb{R}, p \leq b$. Assume there exists a flow $f \geq 0$ such that $\nabla f \geq p$, and there exists another flow $f' \geq 0$ with $\nabla f' \leq b$. Then, there exists a flow $f'' \geq 0$ that simultaneously satisfies $p \leq \nabla f'' \leq b$.

Hint: One possible approach is to use duality/Farkas's lemma. Alternatively, you can prove this via a combinatorial algorithm, moving from one flow towards the other via path augmentations.

Exercise 1.4 Consider a directed graph $G = (V, E)$ with edge weights $c : E \to \mathbb{R}$. For $k = 0, 1, 2, ..., n$, and $i \in V$, we let $\rho_i^{(k)}$ $\binom{k}{i}$ denote the length of the minimum-cost walk of *exactly k* arcs ending in *i*. These can be computed by a simple algorithm as follows. Start by setting $\rho_i^{(0)} = 0$ for all $i \in V$, and in every iteration, we update

$$
\rho_i^{(k+1)} := \min_{j \in \delta^-(i)} \rho_j^{(k)} + c_{ji}.
$$

Show that the minimum mean value of a cycle in G equals

$$
\min_{i \in V} \max_{0 \le k \le n-1} \frac{\rho^n(i) - \rho^k(i)}{n-k}
$$

.