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Chapter 1

Minimum-cost flows

1.1 Strongly polynomial algorithms

We assume familiarity with the standard notion of Turing complexity. Consider a problem that is
given by an input of N rational numbers in binary description. An algorithm for such a problem is
strongly polynomial, if

(i) It only uses elementary arithmetic operations: addition, comparison, multiplication, and division;

(ii) the total number of arithmetic operations is bounded by poly(N);

(iii) the algorithm runs in polynomial space: that is, the size of the numbers occurring throughout
the algorithm remain polynomial in the size of the input.

Above, for a rational number p/q with integers p and q, its size is defined as size(p/q) := dlog2(|p|+
1)e+ dlog2(|q|+ 1)e, the number of bits needed for binary encoding. The size of a vector of rationals
is the sum of the sizes of its components.

Alternatively, we can think of the strongly polynomial computation model as one applicable to
the real model of computation. In this case, the input can be given by real numbers, and elementary
arithmetic operations are carried out by oracles provided (with infinite precision). Thus, we omit
requirement (iii). (However, for a realistic model, one needs to work with approximate computations
with bounded error instead of infinite precision.)

Linear Programming Our main interest will be special cases of linear programming (LP). For
A ∈ Qm×n, b ∈ Qm, c ∈ Qn, consider

min c>x

Ax = b

x ≥ 0.

(1.1)

Here, the input is given by N = n ×m + n + m rational numbers; let L denote the total encoding
length of the problem. In this context, an algorithm polynomial in the Turing model is called weakly
polynomial. The first weakly polynomial algorithm for LP was Khachiyan’s ellipsoid algorithm [9].
The number of arithmetic operations in the ellipsoid algorithm inherently depends on L, and the same
holds for all subsequent polynomial time algorithms such as interior point methods. We will also use
the term pseudopolynomial to refer to algorithms whose running time is polynomial in the value of
the input numbers (instead of their sizes).

It is an outstanding open question is to develop a strongly polynomial algorithm for LP. This
is listed by Fields medalist Smale not only as the main unsolved problem in linear programming
theory, but as one of the most important challenges for the twenty-first century in the entire field of
mathematics [18].
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4 CHAPTER 1. MINIMUM-COST FLOWS

1.1.1 Examples

Repeated squaring Consider the problem where the input includes a single number k = 2`, in a
binary representation (that is, requiring ` bits), and the algorithm needs to output 2k = 22` . The
number of elementary arithmetic operations is polynomial as it can be obtained by repeated squaring.
However, the space requirement to describe the output in standard binary representation is exponential
in the input, and thus this algorithm does not run in polynomial space.

Euclidean algorithm Consider the Euclidean algorithm for computing the greatest common divisor
of two integers a and b. This is also a weakly but not strongly polynomial time algorithm; notice
that the number of arithmetic operations would need to be constant. As a consequence, in the
strongly polynomial model we cannot simply replace rational numbers in the form p/q by co-prime
representations.

Gaussian elimination The classical Gaussian elimination algorithm can be used to bring a matrix
A ∈ Qm×n to the upper triangular form as follows. We construct a sequence A0 = A,A1, . . . , Ar of
matrices for r = rk(A) ≤ m, such that

Ak =

(
B C
0 D

)
,

where B is a k × k strict upper triangular matrix. To obtain Ak+1 from Ak, we permute the rows of
D such that d11 6= 0 (this is called the pivot element), and subtract a multiple of the first row of D
from all other rows such that dj1 becomes 0 for all j > 1. Namely, we set

d′ij := dij −
di1
d11

d1j . (1.2)

It is easy to see that the number of elementary arithmetic operations is bounded by O(m2n), however,
the space complexity becomes a problematic issue. We could easily keep the size of numbers under
control by maintaining co-prime representations, but that is not admissible as pointed out above.

To highlight the problem, assume that the input matrix is integer, and at every elimination step
we maintain an integer matrix. This can be achieved by modifying the update formula (1.2) to

d′ij := dijd11 − di1d1j . (1.3)

Using this formula, the size of the numbers could become exponential, as illustrated by the following
example: 

2 0 0 . . . 0
1 2 0 . . . 0
1 1 2 . . . 0
...

...
...

. . . 0
1 1 1 . . . 2

 (1.4)

Nevertheless, Edmonds [3] has shown that the original update formula (1.2) yields a strongly polyno-
mial algorithm. See also [7, Section 1.4] for the proof.

1.2 Network flow problems

Consider a directed graph G = (V,E) with arc capacities u : E → Q+∪{∞}. We will use n := |V | and
m := |E| throughout. For a set of nodes S ⊆ V , we let δ+(S) and δ−(S) denote the set of outgoing
and incoming arcs, respectively; for a node v ∈ V we let δ+(v) := δ+({v}), δ−(v) := δ−({v}). For any

arc set F ⊆ E, we let
←
F := {ji : ij ∈ E} denote the set of reverse arcs of F , and

↔
F := F ∪

←
F .

For a vector v : X → R, we let supp(v) := {i ∈ X : vi 6= 0}, and for subset Y ⊆ X, we let
v(Y ) :=

∑
i∈Y vi. We let ‖v‖1 :=

∑
i∈X |vi| and ‖v‖∞ = maxi∈X |v| denote the `1 and `∞ norms,

respectively.
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For a vector f : E → R+, we define the balance at node i ∈ V as

∇fi :=
∑

ji∈δ−(i)

fji −
∑

ij∈δ+(i)

fij .

Given source s ∈ V and sink t ∈ V , the maximum flow problem is

max ∇ft
∇fi = 0 ∀i ∈ V \ {s, t}

0 ≤ f ≤ u.

A feasible f is called a flow, and the flow value is ∇ft. An s− t cut is a subset of nodes S ⊆ V with
s ∈ S, t /∈ S, and the value of the cut is u(δ+(S)). Recall the maximum flow-minimum cut (MFMC)
theorem:

Theorem 1.1. Given a capacitated network (V,E, u) and s, t ∈ V , the maximum value of an s − t
flow equals the minimum value of an s− t cut.

Residual network Given a flow f , we define the residual graph Gf = (V,Ef ) such that ij ∈ Ef if
ij ∈ E and fij < uij , or if ji ∈ E and fji > 0. These two types of arcs will be called forward and

backward arcs. The residual capacity of a forward arc ij is ufij := cij − fij , and for a backward arc ij

it is ufij := fji. By sending δ units of flow on an arc ij in the residual graph we mean increasing fij
by δ if ij is a forward arc and decreasing fji by δ if ij is a backward arc. Sending δ units of flow on a
path/cycle in the residual graph means sending δ units on every arc of the path/cycle.

The Ford-Fulkerson algorithm To prove the MFMC theorem, Ford and Fulkerson showed that
as long as f is not a maximum s− t flow, there exists an s− t path in the residual graph Gf . Consider
any such s − t path P , and let δ denote the minimum residual capacity along P . Then, we obtain a
feasible flow f ′ by sending δ units of flow on P ; this increases the flow value by δ. The Ford-Fulkerson
algorithm starts from f = 0, and keeps repeating the above step as long as the current flow is not
maximum.

If the capacities c are integers, then the algorithm maintains an integer flow throughout, and the
flow value increases by one at every step. Hence, the number of iterations will be bounded by u(δ+(s)).

However, this running time is only pseudopolynomial. This can be verified on the example with
V = {s, t, i, j}, E = {(s, i), (s, j), (i, t), (j, t), (i, j) with usi = usj = uit = ujt = U for a large integer
U , and uij = 1. The algorithm may repeatedly use the paths s− i− j − t and s− j − i− t to send 1
unit of flow each time, giving a total of 2U iterations.

The Edmonds-Karp-Dinits algorithm The first strongly polynomial algorithms for the max-
imum flow problem was given by Dinits [2], and independently by Edmonds and Karp [4]. These
amount to a special selection rule in the Ford-Fulkerson algorithm: always pick a shortest s− t path
in the residual graph. In the previous example, this would terminate in only 2 augmentations.

In general, they showed that the algorithm always terminates within O(mn) path augmentations;
see e.g. [1, Chapter 7.4] for the proof; this yields a total running time O(nm2) that can be further
improved to O(n2m).

There is a large literature of strongly polynomial maximum flow algorithms, see [1]. The current
fastest running time O(mn) was given by Orlin in 2013 [14], building on several previous results. If the
capacities are small, there are much faster weakly polynomial algorithms available; we do not discuss
them here.
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1.3 The minimum-cost flow problem

Consider a capacitated network as in the previous section, with arc costs c : E → Q and node demands
b : V → Q such that b(V ) = 0. We say that f : E → R is a b-flow if ∇f = b. The minimum-cost flow
problem asks for minimum c-cost of a b-flow f satisfying the capacity constraints:

min c>f

∇fi = bi ∀i ∈ V
0 ≤ f ≤ u.

(1.5)

To simplify the discussion, we will assume that all capacities are infinite, that is, we only have the
nonnegativity constraint f ≥ 0. This is without loss of generality (see homework exercise): every
capacitated flow problem on n nodes and m arcs can be replaced by an equivalent uncapacitated
instance on n+m nodes and 2m arcs. We will focus on the uncapacitated form:

min c>f

∇fi = bi ∀i ∈ V
0 ≤ f.

(1.6)

The dual problem can be written as:

max b>π

πj − πi ≤ cij ∀ij ∈ E
(1.7)

Node potentials and negative cycles Given a vector π : V → R (often called a node potential)
we can define the modified cost function

cπij := cij + πi − πj .

The following is a simple observation:

Claim 1.2. For any cycle C ⊆ E, and any π : V → R, we have cπ(C) = c(C).

Node potentials provide a well-known characterization on whether a graph contains a negative
cycle:

Lemma 1.3. Given a directed graph G = (V,E) and arc costs c : E → R, every cycle has a nonnegative
cost if and only if there exists a node potential π such that cπ ≥ 0.

Proof. The existence of such a potential clearly implies that no negative cycle may exists using the
previous claim. Conversely, assume there exists no negative cost cycle. For every node i ∈ V , let
us define π to be the minimum-cost of a walk ending at i. Since all cycles have nonnegative costs,
this is well-defined: the optimal walk Pi is a path. The definition implies that πj ≤ cij + πi, that is,
cπ ≥ 0.

There are several simple strongly polynomial algorithms for deciding whether a given graph con-
tains a negative cost cycle. A simple (but not the most efficient) label correcting algorithm inspired

by the above proof is the following. For k = 0, 1, 2, . . . , n, and i ∈ V , we let π
(k)
i denote the length

of the minimum-cost walk of ≤ k arcs ending in i. We start by setting π
(0)
i = 0 for all i ∈ V , and in

every iteration, we update

π
(k+1)
i := min{π(k)

i , min
j∈δ−(i)

π
(k)
j + cji}.

Let us compute these values for k ≤ n. If π(n) = π(n−1), then π = π(n) satisfies cπ ≥ 0. Otherwise,

we have a j ∈ V with π
(n)
j < π

(n−1)
j ; thus, there is a walk of length n ending at j that is shorter than

any path ending at j, implying the existence of a negative cycle that can be easily recovered from the
sequence of values computed during the algorithm.



1.3. THE MINIMUM-COST FLOW PROBLEM 7

Feasibility Deciding the feasibility of (1.6) reduces to a maximum flow computation (see exercise).
Hoffman’s circulation theorem provides a particularly simple characterization of feasibility.

Theorem 1.4. The program (1.6) is feasible if and only if there exists no set S ⊆ V with δ−(S) = ∅
and b(S) > 0.

The only if direction is immediate: we have

f(δ−(S))− f(δ+(S)) =
∑
i∈S
∇fi.

For a b-flow f and a set S with no incoming arcs, we see that 0 ≥
∑

i∈S ∇fi = b(S) must hold.

Flow decomposition For an arc set H ⊆ E, we let χH : E → R+ be the indicator flow defined as
χHe = 1 if e ∈ H and χHe = 0 otherwise.

Theorem 1.5. Consider a vector f : E → R+. Then, we can write

f =

k∑
`=1

λ`χ
P` +

k′∑
`=1

µ`χ
C` ,

where k + k′ ≤ |supp(f)|, all P`’s are paths, all C`’s are cycles, and
∑k

`=1 λ` = ‖∇f‖1/2. Further, if
k′ = 0, then ‖f‖∞ ≤ ‖∇f‖1/2. Moreover, such a decomposition can be found in strongly polynomial
time.

Note that since
∑

i∈V ∇fi = 0, we have ‖∇f‖1 = 2
∑

i∈V :∇fi>0∇fi.

Proof. The proof is by induction on |supp(f)|. First, assume that ∇f = 0. Let us select any ij
with fij > 0; let i1 := i and i2 := j. Since ∇fi2 = 0, there must be an outgoing arc i2i3 with
fi2i3 > 0. Similarly, we construct a walk i1i2i3 . . .. The first time a vertex occurs for the second
time, we have identified a cycle C1 in supp(f). We let µ1 := mine∈C1 fe and f ′ := f − µ1χ

C1 . Thus,
|supp(f ′)| < |supp(f)|, and we can use induction to obtain the decomposition.

If ∇f 6= 0, then we use the same argument, starting from an i1 such that ∇fi1 < 0; thus, there
must be an outgoing arc i1i2 ∈ supp(f). Using the same procedure as above, we either find a closed
walk, or get stuck in a vertex it such that there are no outgoing arcs in supp(f), meaning ∇fit > 0.
In this case, we have found a path P1 = i1i2 . . . it, and set λ1 := mine∈P1 fe. We let f ′ := f − µ1χ

P1

and use induction. Note that ‖∇f ′‖1 = ‖∇f‖1 − 2λ1.

In the absence of cycles in the decomposition, the bound ‖f‖∞ ≤ ‖∇f‖1/2 =
∑k

i=1 µi is immediate.
The above argument can be easily turned into an efficient algorithm.

Interpreting the dual Let us now consider the dual program (1.7). For a feasible solution π, the
constraints assert that cπ ≥ 0. Note that it implies in particular that there are no negative cycles in
G. In case there is a negative cost cycle, the primal (1.6) is unbounded. Complementary slackness
yields that cπij = 0 must hold whenever fij > 0.

In the uncapacitated formulation (1.6), the residual graph Gf = (V,Ef ) is of a simple form,

namely Ef = E∪
←−−−−−
supp(f). For a reverse arc ij we define the cost as cij := −cji. With this convention,

Lemma 1.3 yields the following:

Lemma 1.6. The nonnegative b-flow f is optimal to (1.6) if and only if the residual graph Gf contains
no negative cycles.

Note that one direction is obvious: if Gf includes a negative cycle, then we can obtain a better
solution by sending a small amount of flow on this cycle. Using this optimality condition, we can
obtain two natural algorithm schemes for the minimum-cost flow problem.
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1.3.1 The cycle cancelling algorithm

In the cycle cancelling algorithm, we start with a feasible nonnegative b-flow f . A b-flow f can be
obtained via a maximum flow computation (as mentioned above). We refine this slightly to obtain
a good starting solution: we compute the flow decomposition of f as in Theorem 1.5. Consider the
cycles in the decomposition. If any of them is negative, then (1.6) is unbounded (why?). Otherwise,
we remove all cycle flows; the resulting flow will be the starting flow for the algorithm.

In every iteration, we check whether Ef contains a negative cycle. If not, then we can conclude
that the current f is optimal. Otherwise, we select a negative cycle C ⊆ Ef , and let δ to be the
smallest residual capacity of any arc on C. We change f by sending δ units of flow around C. Clearly,
this changes the cost c>f by δc(C) < 0.

Algorithm 1 Cycle Cancelling Algorithm

Input: Graph G = (V,E), node demands b : V → Q, with b(V ) = 0, costs c : E → Q.
Output: A minimum-cost b-flow.
1: Compute an initial b-flow f . Remove all cycles from the decomposition.
2: repeat
3: Decide if Ef contains a negative cost cycle C.
4: if no negative cycle exists then return f .
5: else δ ← mine∈C u

f
e . Send δ units of flow around C.

6: until Ef contains no negative cycles.

Theorem 1.7. Assume all node demands and arc costs are integers, with |cij | ≤ C for all ij ∈ E.
Then the cycle cancelling algorithm terminates in mC‖b‖1 iterations.

Proof. Using Theorem 1.5, we see that the initial flow has ‖f‖∞ ≤ ‖b‖1/2; therefore, its cost is at
most mC‖b‖1/2. Similarly, we see that there exists an optimal flow with a decomposition containing
no cycles; therefore the optimum value can be lower bounded by −mC‖b‖1/2.

For integer b, we can assume that the initial flow is integer, and it remains integer throughout.
The cost decreases by at least one in every iteration; the claimed bound follows.

This bound is only pseudopolynomial. There are examples showing that the generic cycle cancelling
algorithm can run for an exponential number of iterations. For irrational input, it may not even
terminate.

1.3.2 The successive shortest path algorithm

The cycle cancelling algorithm proceeds by constructing a sequence of feasible solutions to (1.6) of
decreasing objective value. We now exhibit an algorithm that maintains instead feasible dual solutions
to (1.7), but proceeds with infeasible solutions to (1.6). Throughout, we maintain a nonnegative flow
f ≥ 0 that may violate the node demand constraints. If ∇fi > bi, then i is a excess node, and
if ∇fi < bi, then i is a deficient node. The key invariant maintained throughout is the optimality
condition in Lemma 1.6:

The residual graph Gf contains no negative cost cycles. (1.8)

We initialize f = 0; thus, Gf = E. If (1.8) is violated, then we can conclude that the instance is
unbounded or infeasible. Otherwise, in every iteration, we select a shortest path P in Gf from an
excess node r to a deficient node q. We send δ units of flow along P where δ is the minimum of the
excess of r, the deficiency of q, and the minimum residual capacity of the arcs in P . Such a shortest
path can be found via Dijkstra’s algorithm; we describe a simple (but not the most efficient) variant
in Algorithm 2. Given a node potential π, we say that an arc e ∈ Ef is tight if cπe = 0. The key
observation is the following:

Lemma 1.8. Throughout the successive shortest path algorithm, the invariant (1.8) is maintained.



1.4. THE GOLDBERG-TARJAN ALGORITHM 9

Algorithm 2 Successive Shortest Path Algorithm

Input: Graph G = (V,E), node demands b : V → Q, with b(V ) = 0, costs c : E → Q.
Output: A minimum-cost b-flow, or the conclusion that (1.6) is infeasible or unbounded.
1: fe ← 0 for all e ∈ E.
2: Compute π : V → Q such that cπe ≥ 0 for all e ∈ E.
3: if no such π exists then return a negative cycle in E.

4: repeat
5: R← {i ∈ V : ∇fi > bi}. . excess nodes
6: Q← {i ∈ V : ∇fi < bi}. . deficient nodes
7: S ← {i ∈ V : ∃ a tight path from i to Q in Ef}.
8: while S ∩R = ∅ do
9: ε← min{cπij : ij ∈ Ef , i /∈ S, j ∈ S}.

10: if ε =∞ then return infeasible instance.
11: else
12: πi ← πi + ε for all i ∈ S.
13: S ← {i ∈ V : ∃a tight path from i to Q in Ef}.
14: Select a tight path P from a node r ∈ R to a node in q ∈ Q.

15: δ ← min
{
∇fr − br, bq −∇fq,mine∈P u

f
e

}
. Send δ units of flow on P .

16: until f is a b-flow.
17: return f .

Proof. This can be verified by maintaining the potential π as in Algorithm 2 that satisfies cπe ≥ 0 for
all e ∈ Ef . Whenever a shortest path is found, all its arcs are tight: cπe = 0 for all e ∈ P . When we
send flow along P , the only new arcs appearing in Ef can be reverse arcs of some arcs in P , namely,
if ij ∈ P ∩ E, and fij = 0 before sending the flow, then ji enters Ef as a new reverse arc. However,
in this case, cπij = 0, and therefore cπji = −cπij = 0. Therefore, the same π verifies (1.8) after the flow
update.

Theorem 1.9. If all node demands are integers, then the Successive Shortest Path Algorithm termi-
nates in ‖b‖1/2 iterations. The running time of the algorithm is O(‖b‖1(m+ n log n))

Proof. Let

Ex(f) :=
∑
i∈V

(∇fi − bi)+ = ‖∇f − b‖1/2.

denote the total excess of f . Initially, Ex(f) = ‖b‖1/2. The flow remains integer throughout, and in
every path augmentation, Ex(f) decreases by δ ≥ 1. The bound on the number of iterations follows.
Using the efficient implementation of Dijkstra’s algorithm with Fibonacci heaps (which is different
from the variant described in Algorithm 2), every iteration takes O(m+ n log n) time.

Finally, we show that if no shortest path can be found, that is, ε = ∞ at some point of the
algorithm, then the set S testifies that no b-flow may exist. Indeed, we have bi ≥ ∇fi for every
i ∈ S, with strict inequality for all i ∈ Q. Also, fij = 0 on all arcs entering and leaving S. Therefore
b(S) >

∑
i∈S ∇fi = 0. The set S has positive total demand, but there are no arcs entering S, showing

that no b-flow exists according to Theorem 1.4.

1.4 The Goldberg-Tarjan algorithm

The cycle cancelling algorithm allows for selecting arbitrary cycles. Goldberg and Tarjan [6] have
found a simple and elegant selection rule that ensures strongly polynomial termination. We now
introduce the algorithm and provide the weakly polynomial analysis. The strongly polynomial bound
will be shown in Section 2.1.1.

The mean cost of a cycle C ∈
↔
E is defined as c(C)/|C|. The Goldberg-Tarjan (GT) algorithm is

the special implementation of the cycle cancelling algorithm where we always select a cycle C in Ef
that has the minimum-mean cost. Let us now discuss how this cycle can be found.
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1.4.1 Finding a minimum-mean cycle

Consider the following pair of primal and dual LPs:

min c>x

∇xi = 0 ∀i ∈ V∑
e∈E

xe = 1

x ≥ 0.

max − ε
πj − πi − ε ≤ cij ∀ij ∈ E

(1.9)

Lemma 1.10. The support of a basic optimal solution to the primal LP in (1.9) gives a minimum-
mean cycle.

Proof. For every cycle C ⊆ E, setting xe := 1/|C| for e ∈ C and xe := 0 otherwise gives a solution to
the primal LP of cost c(C)/|C|. Consider the optimal primal solution in (1.9), which is a circulation
(0-flow). As in Theorem 1.5, this can be written as a nonnegative combination of incidence vectors of
cycles. Clearly, a basic feasible solution must be supported on a single cycle C. Thus, a basic optimal
solution corresponds to a minimum-mean cycle.

The dual program in (1.9) also gives a very useful interpretation. The minimum cycle mean will
be −ε, where ε is the smallest value such that there exists a potential π satisfying cπe ≥ −ε for all
e ∈ E. By Lemma 1.3, this is equivalent to that the cost function c′ defined by c′e = ce + ε does not
contain any negative cycles.

The LPs in (1.9) can be solved in strongly polynomial time, by a modification of the negative cycle
detection algorithm, see the exercises.

1.4.2 The weakly polynomial analysis

The weakly polynomial running time guarantee follows from the next lemma. For a given b-flow f , let
ε(f) denote the absolute value of the minimum-mean cycle value, that is, the negative of the optimum
value in (1.9).

Lemma 1.11. The value of ε(f) is monotone decreasing throughout the GT algorithm. Let f be the
flow at a certain iteration and f ′ the flow m iterations later. Then, ε(f ′) ≤

(
1− 1

n

)
ε(f). Consequently,

within nm iterations, ε(f) decreases at least by a factor 2.

Proof. For the first part, let f be the flow at a certain iteration, and let π be the dual optimal solution
to (1.9) for the graph Gf = (V,Ef ). Thus, cπe ≥ −ε for every e ∈ Ef , and by complementary slackness,
equality holds for all arcs on the cycle C selected in this iteration. The new arcs entering Ef can be

arcs on
←
C; but any such new arc will have cπe = ε. Consequently, the potential π shows that the cycle

mean is ≥ −ε after the iteration.

For the second part, let f̄ := f (t) denote the flow at the t-th iteration of the GT algorithm, and
let π̄ denote a dual optimal solution to (1.9) for Gf . Let ε := ε(f̄).

Let Ē ⊆ Ef̄ denote the set of arcs such that cπ̄e < 0. Clearly, −ε ≤ cπ̄e for every e ∈ Ef , and using
complementary slackness, the t-th iteration selects a cycle C̄ with all arcs e ∈ C̄ satisfying cπ̄e = −ε,
in particular, e ∈ Ē.

Let t′ > t be the first iteration such that the cycle Ct′ selected at iteration t′ uses an arc outside
Ē. We claim that t′ ≤ t+m, and that ε(f (t′)) ≤

(
1− 1

n

)
ε(f (t)).

Consider any iteration τ between t ≤ τ < t′. We claim that in this iteration, no arc new e ∈
↔
E is

added to Ef such that cπ̄e < 0, and at least one such arc is removed. Let Cτ be the cycle cancelled in
this iteration. By the choice of t′, every e ∈ Cτ has cπ̄e < 0, and any new arcs entering the residual

graph are in
←
Cτ , thus, they have a positive reduced cost. Further, at least one negative reduced cost

are is removed from Ef , namely those that get saturated on the cycle Cτ .
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The above argument also gives cπ̄e ≥ −ε for every arc e in the residual graph at iteration t′; in
particular, this holds for all arcs of Ct′ . Further, at least one arc e′ ∈ Ct′ satisfies cπ̄e′ ≥ 0. Consequently,
the mean cost is

c(Ct′)

|Ct′ |
≥ −(|Ct′ | − 1)ε

|Ct′ |
≥ −

(
1− 1

n

)
ε.

Theorem 1.12. For an integer cost function c : E → Z, with ce ≥ −C for all e ∈ E, the GT algorithm
terminates in O(nm log(nC)) iterations.

Proof. The mean of any cycle is ≥ −C, therefore ε(f) ≤ C at the initialization. According to
Lemma 1.11, within O(nm log(nC)) the value of ε decreases below 1/n. Since all costs are integer,
this means that the cycle mean at this point is nonnegative.

1.5 The Edmonds-Karp scaling algorithm

The running time of the successive shortest paths (SSP) algorithm is pseudopolynomial: it depends on
‖b‖1 for integer demands b. The first weakly polynomial algorithm for the minimum-cost flow problem
was given by Edmonds and Karp in 1972 [4]. This introduced the influential idea of scaling to turn
the SSP algorithm into a polynomial algorithm.

The main caveat of the SSP algorithm is that the minimum residual capacity of a shortest path
could be very small. The variant described below will be a variant of the SSP algorithm that always
augments by amounts that are commensurate with the excess Ex(f). The algorithm is guided by a
scaling factor ∆, which will be selected as decreasing powers of 2.

The algorithm is divided into ∆ phases. In a ∆-phase, the deficiency of every node is at most 2∆,
and there are some nodes with deficiency at least ∆. We let Q denote the set of such nodes; if this is
empty, we move on to the next phase by dividing ∆ by 2.

Otherwise, we find a shortest path from an excess node to a node in Q as in the SSP algorithm,
and send ∆ units of flow along this path.

Algorithm 3 Edmonds-Karp Scaling Algorithm

Input: Graph G = (V,E), node demands b : V → Z, with b(V ) = 0, costs c : E → Q.
Output: A minimum-cost b-flow, or the conclusion that (1.6) is infeasible or unbounded.
1: fe ← 0 for all e ∈ E.
2: ∆← 2k for the smallest k such that 2∆ ≥ |bi| for all i ∈ V .
3: Compute π : V → Q such that cπe ≥ 0 for all e ∈ E.
4: if no such π exists then return a negative cycle in E.

5: repeat
6: R← {i ∈ V : ∇fi > bi}. . excess nodes
7: Q← {i ∈ V : ∇fi ≤ bi −∆}. . nodes with large deficiency
8: while Q = ∅ do ∆← ∆/2 ; recompute Q. . New ∆-phase.

9: Update π and find a tight path P from a node r ∈ R to a node in q ∈ Q or conclude
infeasibility as in Algorithm 2.

10: Send ∆ units of flow on P .
11: until f is a b-flow.
12: return f .

Theorem 1.13. Assume all node demands are integers of absolute value ≤ B. Then the Edmonds-
Karp scaling algorithm finds a minimum-cost flow or concludes that the problem is infeasible or un-
bounded in time O(n(m+ n log n) logB).

Proof. First, let us show that we can always send ∆ units of flow along the path P , that is, we do
not violate the residual capacities. This follows by showing that in the ∆ phase, the flow on every
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arc is an integer multiple of ∆. The proof is by induction: this clearly holds in the first phase, and is
maintained when moving to the next phase, because we select the new value of ∆ as ∆/2. Therefore,
the flow f remains nonnegative throughout.

The bound bi − ∇fi ≤ 2∆ is also maintained. Initially, this is how ∆ was selected. A path
augmentation could turn the starting excess node into a deficient node, but in this case the deficiency
will be < ∆. We decrease ∆ once bi −∇fi < ∆ for all i; thus, bi −∇fi ≤ 2∆ for the new value. Let
us consider the potential

Ξ(f) :=
∑
i∈V

max

{⌊
bi −∇fi

∆

⌋
, 0

}
.

By the above, Ξ(f) ≤ 2n throughout. In every path augmentation between r and q, ∇fi remains
unchanged for all nodes different from r and q. The term corresponding to r is 0 both before and after
the path augmentation, and the term for q is initially ≥ 1 and decreases by 1.

Thus, within the same ∆ phase, Ξ(f) cannot increase but it decreases at every path augmentation.
Therefore the number of path augmentations is at most 2n in every ∆-phase.

At the end of the phase ∆ = 1, the algorithm terminates with an optimal solution, since the flow
and b are integer, and Q = ∅. Thus, the total number of phases is log2B, and the total number of
path augmentations in O(n logB).

This algorithm is inherently not strongly polynomial: ∆ always decreases by a factor 2, hence
we need to go through logB phases. (Instead of always halving, we could immediately jump to the
smallest power of 2 such that Q 6= ∅, but this is does not suffice from strong polynomiality.)



Chapter 2

Techniques for strongly polynomial
algorithms

We now exhibit a general approach that enables to turn weakly polynomial or even pseudopolynomial
flow algorithms into strongly polynomial ones. The main progress is measured by showing that, within
a strongly polynomial number of iterations, we can learn the value of a variable in every optimal
solution to (1.6), or that a constraint must be binding in every optimal solution to (1.7). Thus, we
can reduce the size of the network by contracting or deleting arcs.

2.1 Primal variable fixing

Lemma 2.1 (Tardos). Consider a b-flow f , labels π : V → R and ε > 0 such that cπe ≥ −ε for all
e ∈ Ef . If for some e ∈ E, cπe > nε, then f∗e = fe must hold for every optimal solution f∗ to (1.6).

Note that for ε = 0, f and π are primal and dual optimal solutions, and the statement follows by
complementary slackness.

Proof. Let f∗ be any optimal solution, and let us define the flow h :
↔
E → R as

hij :=

{
f∗ij − fij , if ij ∈ E, fij ≤ f∗ij
fji − f∗ji, if ji ∈ E, fji > f∗ji.

Since f and f∗ are both b-flows, then h must be a circulation (that is, a 0-flow). If f∗e 6= fe, then
he > 0 or h←e > 0; let us assume he > 0; the case h←e > 0 follows analogously. Thus, there must be a
cycle C in supp(h) containing e. Then,

c(C) = cπ(C) ≥ cπe +
∑
e′∈C

cπe′ > nε− (n− 1)ε = ε > 0.

Let
←
C denote the reverse cycle. Then, c(

←
C) = −c(C) < 0. However,

←
C ⊆ Ef∗ , giving a contradiction

to Lemma 1.6.

Once we can infer the value of an arc ij in the optimal solution, we can delete ij from the graph, and
modify the demands bi and bj accordingly. An optimal solution to the modified instance immediately
extends to an optimal solution to the original instance.

Tardos’s algorithm proceeds as follows: every major iteration deletes at least one arc from the
graph. To achieve this, we can construct a rounded version of the problem where all costs are small
integers. Every algorithm that has even pseudopolynomial dependence on the costs (and does not
depend on the capacities) can solve such an instance optimally. One example is the out-of-kilter
algorithm, see [1, Section 9.9]. From the output, one can identify an arc as in Lemma 2.1.

Instead of giving the details, we show how the number of iterations in the GT algorithm is strongly
polynomial using a slight generalization of this lemma.

13
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2.1.1 The Goldberg-Tarjan algorithm

We formulate an extension of Lemma 2.1. Recall the notion of ε(g) from Section 1.4.

Lemma 2.2. Consider two b-flows f and g, π : V → R and ε > 0 such that cπe ≥ −ε for all e ∈ Ef .
If for some e ∈ E, cπe > nε+ nε(g), then fe = ge must hold.

Theorem 2.3. For arbitrary (even real valued) costs, the GT algorithm terminates in O(nm2 log n)
iterations.

Proof. Let T = nm(dlog ne + 1). At iteration t, let Et ⊆ E denote the set of arcs e such that fe
does not change in any subsequent iteration of the GT algorithm. We show that if t′ ≥ t + T , then
Et′ ) Et. This implies the bound, since the total number of arcs is m.

Let f and f ′ be the flow at times t and t′ respectively, and π and π′ the corresponding potentials.
Let ε := ε(f) and ε′ := ε(f ′). According to Lemma 1.11, ε′ ≤ ε/2n. Consider the cycle C that was
cancelled in iteration t. This has

−|C|ε = c(C) = cπ
′
(C)

Consequently, one of the arcs ij ∈ C has cπ
′
ij ≤ −ε ≤ 2nε′. Note that ij ∈ Ef \ Ef ′ , meaning that

ji ∈ E and f ′ji = 0. Further, cπ
′
ji > 2nε′.

Let f ′′ be the flow at any iteration t′′ > t′. Then, ε(f ′′) ≤ ε′. Lemma 2.2 shows that f ′′ji = f ′ji.
Consequently, ji ∈ Et′ , but ji /∈ Et, completing the proof.

2.2 Dual constraint fixing

Recall the notation Ex(f) =
∑

i∈V (∇fi − bi)+ for the total excess.

Lemma 2.4. Consider an f ≥ 0 such that Gf does not contain any negative cycles, and an arc k` ∈ E
such that fk` > Ex(f). Then, ck` = π` − πk must hold for every optimal solution π to (1.7).

Proof. Let us select an optimal solution f∗ to (1.6) such that ‖f − f∗‖1 is minimal. We show that
‖f − f∗‖∞ < Ex(f) < fk`. Therefore, f∗k` > 0, and the claim follows by complementary slackness.

Let us define the flow h :
↔
E → R as in the proof of Lemma 2.1, namely,

hij :=

{
f∗ij − fij , if ij ∈ E, fij ≤ f∗ij
fji − f∗ji, if ji ∈ E, fji > f∗ji.

We claim that supp(h) does not contain any cycles. Indeed, if C ∈ supp(h), then C ∈ Ef and the

reverse cycle
←
C ∈ Ef∗ . The assumption that Gf does not contain negative cycles and the optimality

of f∗ implies that c(C) = 0. Then, we can change f∗ by subtracting εχC for some ε > 0 to obtain
another optimal solution that is closer to f in 1-norm, a contradiction to the choice of f∗.

Let us apply the flow decomposition Theorem 1.5 to h. By the above, the decomposition contains
only paths, and therefore ‖h‖∞ ≤ ‖∇h‖1/2 = Ex(f) follows. Thus, |fk`−f∗k`| < Ex(f) < fk`, implying
f∗k` > 0.

Contraction How can we use the information that for some k` ∈ E, ck` = π`−πk is guaranteed for
every dual optimal solution to (1.7)? This means that the optimum solution in (1.6) does not change
if we remove the nonnegativity constraint for the variable fk`. Thus, we could contract the nodes k
and ` into a single node with demand bk + b`; every feasible primal solution in the contracted instance
extends to the original graph (with fk` possibly negative).

This contraction can be defined as follows. Let k also denote the image of k and ` in the contracted
instance; we set the demand b′k := bk + b`. We leave the incoming and outgoing arcs incident to k
unchanged. For every `j ∈ E in the original graph, we add an arc kj ∈ E with cost c′kj := ck` + c`j ;
for every arc j` ∈ E, we add jk ∈ E with cost c′jk := cj` − ck`. If parallel arcs are created, we only
keep the one of lower cost.

Given a dual optimal solution in the contracted instance, we can straightforwardly extend it to the
original instance. Then, we can also obtain a primal optimal solution in strongly polynomial time.
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Lemma 2.5. Assume we are given a dual optimal solution to (1.7). Then, a primal optimal solution
to (1.6) can be obtained by a single maximum flow computation.

2.2.1 Orlin’s strongly polynomial algorithm

Using Lemma 2.4, Orlin [13] showed that the Edmonds-Karp algorithm can be turned into a strongly
polynomial one. The running time in O(n log n(m + n log n)) for the uncapacitated form (1.6), and
O(m log n(m + n log n)) for the capacitated form (1.5). This is still the best running time for the
minimum-cost flow problem. Here, we present a simpler and less efficient variant; the full algorithm
is described in [1, Section 10.2].

The overall scheme Whereas the algorithm uses primal flow augmentations, the true goal is to
obtain a dual optimal solution. We repeatedly run the Edmonds-Karp algorithm for a strongly poly-
nomial number of iterations, until we can apply Lemma 2.4 to obtain an arc k` ∈ E that can be
contracted. Then, we restart the algorithm in the contracted instance. The overall algorithm termi-
nates once all node demands become bi = 0, in which case f = 0 is an optimal solution. Thus, any
potential with cπ ≥ 0 is an optimal dual solution. We blow this back to an optimal dual solution in
the original graph. Then, the optimal primal solution to (1.6) in the original graph can be obtained
using a single maximum flow computation as in Lemma 2.5.

Abundant arcs from the Edmonds-Karp algorithm Let us now consider the Edmonds-Karp
algorithm. Recall from the proof of Theorem 1.13 that in the ∆-phase, the deficiency of any node is
≤ 2∆. Therefore, the total deficiency is ≤ 2n∆, and thus Ex(f) ≤ 2n∆ (since the total excess equals
the total deficiency).

Hence, if in the ∆-phase we can find an arc k` ∈ E with fk` > 2n∆, then Lemma 2.4 is applicable.
We call such an arc an abundant arc. We show the following.

Lemma 2.6. Within the first O(log n) scaling phases of the Edmonds-Karp algorithm, the flow must
contain an abundant arc.

Proof. Let B := maxi∈V |bi|, and let s ∈ V be the node giving the maximum value. The initial
value of ∆ satisfies B/2 ≤ ∆ ≤ B. Hence, in O(log n) phases, we obtain a value of ∆ such that
2n(n+ 1)∆ < |bs|.

First, assume that bs > 0. Then, since ∇fs ≥ bs − 2∆, we must have ∇fs > 2n2∆. Then, one of
the incoming arcs js ∈ δ−(s) must carry at least fjs > 2n∆, that is, js is abundant.

For the case bs < 0, we know that ∇fs ≤ bs + Ex(f) ≤ bs + 2n∆, that is, ∇fs < −2n2∆. Now,
one of the outgoing arcs sj ∈ δ+(s), must be abundant.

Algorithm 4 Orlin’s Algorithm

Input: Graph G = (V,E), node demands b : V → Z, with b(V ) = 0, costs c : E → Q.
Output: A minimum-cost b-flow, or the conclusion that (1.6) is infeasible or unbounded.
1: while b 6= 0 do
2: Run the Edmonds-Karp scaling algorithm for O(log n) iterations, until an abundant arc
ij ∈ E is identified, or the algorithm terminates detecting infeasibility or unboundedness.

3: Contract(ij).

4: Compute π in the current contracted graph such that cπe ≥ 0 for all e ∈ E.
5: Expand π to a dual optimal solution in the original graph.
6: Compute a b-flow f using only tight arcs for π.
7: return f .
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2.3 Combinatorial linear programs

Tardos gave a far-reaching extension of her minimum-cost flow result to the general LP setting [19].
Consider an LP in the standard form, along with its dual:

min c>x

Ax = b

x ≥ 0

max b>y

y>A ≤ c (2.1)

Assume A ∈ Zm×n is an integer matrix, and let us define a bound on the maximum subdeterminant.

∆(A) ≥ max{|det(B)| : B is a square submatrix of A}.

Note that for totally unimodular matrices, such as the one in the minimum-cost flow problem, we can
use ∆(A) = 1. There are no general methods known to determine the tight value of ∆(A); we can use
the general estimation ∆(A) = nn/2|B|n obtained from Hadamard’s bound, where B = max |aij |.

Theorem 2.7 (Tardos [19]). For A ∈ Zm×n, b ∈ Qm, c ∈ Qn, the LP (2.1) can be solved in time
poly(n,m, log ∆(A)).

Many combinatorial problems can be described by LPs where the entries in the constraint ma-
trix are small integers. For example, even though the multicommodity flow LP is non-integral, the
constraint matrix still contains only +1’s and −1’s. LPs given by an integer constraint matrix where
maxi,j |aij | = poly(n,m) are called combinatorial LPs. For such LPs, log ∆(A) = poly(n,m). Thus,
Tardos’s result gives a strongly polynomial algorithm for combinatorial LPs. Let us note that Vavasis
and Ye [21] gave a generalization of Theorem 2.7 using an interior point method.

Theorem 2.7 provides a meta-algorithm. It requires in the input a weakly polynomial LP algorithm
(such as the ellipsoid or interior point methods), and turns it into a strongly polynomial one using
variable fixing. Here, we only present one important step of the argument, that highlights how the
dependence on ∆(A) comes into play. We let Ai denote the i-th column of the matrix A.

Lemma 2.8 (Tardos [19]). Let x be any feasible solution to (2.1). Further, let y ∈ Rm a vector and
ε > 0 such that y>Ai ≤ ci + ε, and whenever y>Ai < ci, we have xi = 0. For every index k such that
y>Ak ≤ ck − nε∆(A), we must have x∗k = 0 for every optimal solution x∗ to (2.1).

Note that this is a generalization of (a weaker form of) Lemma 2.1. For ε = 0, x and y satisfy
complementary slackness and therefore they are primal and dual optimal solutions to (2.1). The
statement gives a relaxation where the dual constraints might be violated by ε. In the proof, we will
need the following simple statement.

Lemma 2.9. Let Ā ∈ Zm×n, and for a 1 ≤ k ≤ n, let ek ∈ Zn be the k-th unit vector and c ∈ Rn.
Then, if the system Āz = 0, z ≥ ek is feasible, then there for every basic feasible solution z we have
‖z‖∞ ≤ ∆(Ā).

Proof. Let us select z as a basic feasible solution. This corresponds to the unique solution of a system
Cz′ = d, where C =

( B
e′k
>
)

is a nonsingular matrix and d = e′t. Here, B is a (t − 1) × t submatrix of

Ā, and e′k and e′t are the t dimensional k-th and t-th unit vectors for some k ≤ t. (That is, the last
equality in the system is z′k = 1; note that every basic feasible solution must include this as a defining
constraint.)

Using Cramer’s rule, the i-th component is z′i = det(C(i))/det(C), where C(i) is the matrix ob-
tained from C by replacing the i-th column by d. Since d is a unit vector, we see that det(C(i)) ≤ ∆(Ā).
Further, det(C) ≥ 1 due to the integrality of Ā, and thus we have that z′i ≤ ∆(Ā), showing the
claim.

Proof of Lemma 2.8. Consider any optimal solution x∗ to (2.1), and let us define

hi :=

{
x∗i − xi, if xi ≤ x∗i ,
xi − x∗i , if xi > x∗i .
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Let S := {i : 1 ≤ i ≤ n, xi > x∗i }. Let Ā denote the matrix we obtain from A by multiplying every
column Ai for i ∈ S by −1; let c̄ be the cost function obtained from c by negating the same indices.
Then, Āh = 0, h ≥ 0, and c̄>h = c>x∗ − c>x ≤ 0.

Assume for a contradiction that there exists an index k such that y>Ak < dk + nε∆, yet x∗k > 0.
For such indices, xk = 0 was required. Consequently, hk > 0 and k /∈ S.

Let ∆ := ∆(A). Thus, for sufficiently large α > 0, z̄ = αh is a solution to the system

Āz̄ = 0, z̄ ≥ ek, z̄i = 0 if xi = x∗i

Let us consider a basic feasible solution z to this system. By Lemma 2.9, ‖z‖∞ ≤ ∆(Ā) = ∆(A). We
claim that c̄>z ≤ 0. Indeed, c̄>z > 0 would contradict the optimality of x∗ (why?). Using Āz = 0, we
can write

0 ≥ c̄>z = (c̄> − y>Ā)z.

We claim that c̄i − y>Āi ≥ −ε for all i, where Āi is the i-th column of Ā. Indeed, if i /∈ S, then
Āi = Ai and c̄i = ci, and this follows from the assumption y>Ai ≤ ci + ε. If i /∈ S, that is Āi = −Ai,
c̄i = −ci, then xi > x∗i ≥ 0, therefore by the assumption on x we must have y>Ai ≥ ci. Consequently,
c̄i − y>Āi ≥ 0 for all such indices. Since ‖z‖∞ ≤ ∆, we have (c̄i − y>Āi)zi ≥ −ε∆ for every i.

On the other hand, k /∈ S, and we have nε∆ ≤ c̄k − y>Āk. Using zk ≥ 1 and the above bounds,
we get a contradiction from

0 ≥ (c̄> − y>Ā)z ≥ nε∆− (n− 1)ε∆ > 0.



Chapter 3

The generalized flow problem

3.1 Formulations

In the generalized flow problem setting, besides node demands, arc capacities and costs, the arcs are
also equipped with positive gain factors γ : E → R>0. The flow gets multiplied by the factor γe > 0
while traversing arc e.

These factors may represent some kind of physical change, such as leakage in a fluid network.
Another way to view them is that the nodes may represent different types of entities, for example,
currencies and commodities, and the gain factors correspond to exchange rates between them. See [1,
Chapter 15] for several applications of the model.

The generalized flow maximization problem Similarly to (1.6), we use a capacitated form with
node demands. Several variants have been studied in the literature, e.g. it is common to include
arc capacities, but all these can be transformed to the form we use. We are given a directed graph
G = (V,E) with a specified sink node t ∈ V , node demands b : V \ {t} → R, and gain factors
γ : E → R>0. We let fij denote the flow entering arc ij at i; the flow arriving at j is γijfij . Thus, the
net flow at node i is defined as

∇fi :=
∑

e∈δ−(i)

γefe −
∑

e∈δ+(i)

fe.

The generalized flow maximization problem can be formulated as

max ∇ft
s.t. ∇fi ≥ bi ∀i ∈ V \ {t}

f ≥ 0.

(3.1)

The minimum-cost generalized flow problem Assume that we are also given an arc cost c :
E → R. In the minimum-cost version, there is no need to distinguish a sink; it is customary to require
equality in the node constraints.

min c>f

s.t. ∇fi = bi ∀i ∈ V
f ≥ 0.

(3.2)

3.1.1 Linear programs with two nonzeros per column

Let us consider an LP of the form
min c>x

Ax = b

x ≥ 0,

such that the constraint matrix A ∈ Qn×m contains at most two nonzero entries per column. Let
M2(n,m) denote the set of all such matrices, and LP2 the class of LPs defined by such a matrix.

18
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This is a class of LP’s that do not fit into the combinatorial LP framework by Tardos. Still, they
form a natural subclass of LP. Note that by allowing 3 nonzero entries per column, every LP can be
modelled (see exercise). The minimum-cost generalized flow problem falls into LP2, and the converse
is also true:

Theorem 3.1 (Hochbaum[8]). Solving LPs in the class LP2 can be strongly polynomially reduced to
the minimum-cost generalized flow problem.

Let us now consider the primal feasibility problem Ax = b, x ≥ 0 for a matrix A ∈M2(n,m).

Theorem 3.2 ([22]). Finding a feasible solution to Ax = b, x ≥ 0 for a matrix A ∈M2(n,m) can be
strongly polynomially reduced to a generalized flow maximization problem.

The rest of this chapter is dedicated to presenting a strongly polynomial algorithm for generalized
flow maximization. Before moving to that, let us also consider the dual feasibility problem A>y ≤ c
for A ∈M2(n,m). This means that we need to solve a system of linear inequalities with at most two
nonzero variables per inequality.

Theorem 3.3 (Megiddo [10]). There exists a strongly polynomial algorithm for finding a feasible
solution to a system of linear inequalities with at most two nonzero variables per inequality.

Megiddo’s paper [10] introduced the very notion of strongly polynomial algorithms (although he
used the term genuinely polynomial). The algorithm uses a variant of Megiddo’s parametric search
idea that is quite different from the variable fixing techniques discussed in these notes.

To summarize, for LP2 (or equivalently, for the minimum-cost generalized flow problem) we cur-
rently have strongly polynomial algorithms for finding both primal and dual feasible solutions. How-
ever, finding a strongly polynomial algorithm for the minimum-cost circulation problem remains an
open question.

3.2 Basic concepts

Cycle types For a generalized flow f , we define the residual graph Ef as for standard flows. For a

reverse arc ij ∈
←
E, we set γij := 1/γji. Consider a cycle C ∈

↔
E and a node i ∈ V (C). If we send δ

units of flow around C, then δ
∏
e∈C γe units arrive back. Let γ(C) :=

∏
e∈C γe. If γ(C) = 1, then C

is called a unit gain cycle. If γ(C) > 1, then C is a flow generating cycle, and if γ(C) < 1, then C is
a flow absorbing cycle.

Assume we have a feasible solution f to (3.1) such that Ef contains a flow generating cycle. Then,
we can increase ∇fi by a positive amount by an arbitrary i ∈ V (C). If further there exists a residual
path P from i to the sink t, then we can send a positive amount to t; note that the amount can
increase or decrease along the path due to the gain factors. A flow generating cycle C and a path P
connecting V (C) and t is called a generalized augmenting path (GAP). If a GAP exists, then f cannot
be optimal. We will show the converse using duality.

3.2.1 Assumptions

Before writing the dual of (3.1), let us make some assumptions. These are without loss of generality:
the general case can be reduced to instances satisfying these assumptions.

Assumption 3.4. Assume that for every i ∈ V there exists an i− t path in E.

To satisfy this assumption, we may add new it arcs with very small gain factors such that they
would not have any “real” use in an optimal solution. Under this assumption, an optimal solution to
(3.1) must satisfy ∇fi = bi for all i ∈ V \ {t}. This assumption naturally requires the next one.

Assumption 3.5. The arc set E does not contain any flow generating cycles.
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Indeed, given Assumption 3.4, if there were a flow generating cycle anywhere in E, then we would
obtain an uncapacitated GAP. Thus, the instance would be unbounded or infeasible.

In the algorithms we are going to present, we will make one more assumption:

Assumption 3.6. Assume that an initial feasible solution is given to (3.1).

This is a natural assumption in some special cases (e.g. if the uncapacitated instance was obtained
from a capacitated instance with 0 demands).

In the general case we can use an approach similar to the two phase simplex method. Once we
have an algorithm for generalized flow maximization starting from a feasible solution, we can use it
to obtain a feasible solution by applying it to an auxiliary instance.

3.2.2 The dual program and relabellings

Under Assumption 3.4, the dual of (3.1) can be transformed into the following form:

max µt
∑

j∈V \{t}

bj
µj

s.t. µj ≥ γijµi ∀ij ∈ E
µ > 0

(3.3)

We note that the dual variable for node i would be µt/µi. Due to Assumption 3.4, no dual value can
be 0.

Relabellings We interpret the dual solutions as relabellings. These are the basic vehicle of all
combinatorial algorithms. A vector µ : V → R>0 is called a labelling. We define the relabelled flow as

fµij :=
fij
µi

∀ij ∈ E.

The multiplier µi can be interpreted as a change of the unit of measurement at node i; for example,
a node representing pounds would be denominated in pennies. An equivalent problem instance is
obtained by defining

γµij := γij ·
µi
µj
, ∇fµi :=

∇fi
µi

, and bµi :=
bi
µi
.

Then the feasibility of µ to (3.3) is equivalent to γµe ≤ 1 for all e ∈ E. We call an arc e ∈ E tight with
respect to µ, if γµe = 1.

3.2.3 Fitting pairs and optimality

Let f ∈ RE+ and µ ∈ RV>0. We say that (f, µ) is a fitting pair, if µ is feasible to (3.3), and fe > 0
implies γµe = 1. We also say that f fits µ or that µ fits f . Equivalently, (f, µ) is a fitting pair if the
entire supp(f) is tight with respect to µ. Fitting captures complementary slackness. Clearly, we have
the following:

Lemma 3.7. Let (f, µ) be a fitting pair such that ∇fi = bi for all i ∈ V \ {t}. Then f is an optimal
solution to (3.1) and µ is an optimal solution to (3.3).

For a fitting pair (f, µ), γµe = 1 for all e ∈ supp(f). Consequently, fµ is a regular flow; this is true
for any pair of primal and dual optimal solutions.

Lemma 3.8. Given a dual optimal solution to (3.3), a primal optimal solution to (3.1) can be found
by a (standard) maximum flow computation.

Proof. According to Lemma 3.7, finding fµ is equivalent to finding a feasible (standard) flow with
node demands bµ and using only tight arcs w.r.t. µ.
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3.2.4 Cancelling flow generating cycles

Note that a cycle C ⊆
↔
E is flow generating if and only if it is a negative cost cycle for the cost function

ce := − log γe. Consequently, we can adapt several results for standard flows to the generalized flow
setting. Lemma 1.3 immediately implies the following:

Lemma 3.9. The program (3.3) is feasible if and only if there exists no flow generating cycle. Further,
given a flow f , there exists a labelling µ fitting f if and only if Gf contains no flow generating cycles.

The negative cycle detection subroutine described after Lemma 1.3 can be used to decide whether
a flow generating cycle exists. However, one has to be careful to avoid working with irrational costs.
For this purpose, we can develop multiplicative variants of the algorithm.

The Goldberg-Tarjan algorithm can be adapted to cancel all flow generating cycles in the residual
graph of a flow f . Instead of minimum-mean cycles, we cancel cycles that maximize the geometric
mean of the gain, that is, γ(C)1/|C|. The weakly polynomial analysis in Section 1.4 immediately
extends to the multiplicative setting. While the strongly polynomial analysis in Section 2.1.1 does
not carry over, Radzik [15] has shown, using a different argument, that this algorithm is also strongly
polynomial. We will refer to this as the Goldberg-Tarjan-Radzik or GTR subroutine.

There is however an important difference between the two settings: when cancelling all flow gen-
erating cycles, we create additional excess at some nodes of the graph (this is also the reason why the
analysis in Section 2.1.1 does not work).

3.2.5 Onaga’s algorithm

We now describe Onaga’s combinatorial algorithm from 1967 [12]. This can be seen as a natural
counterpart of the successive shortest path algorithm. We start with an initial feasible solution as
in Assumption 3.6, and cancel all flow generating cyles using the GTR algorithm. Then, as long as
there is a node with positive excess, i.e. ∇fi > bi, we use a highest gain path from an excess node
to the sink t in the residual graph Gf , and send the largest amount of flow that does not violate the
capacity constraints. Note that a path is highest gain if and only if it is a shortest path with respect
to the costs ce = − log γe. As for the SSP, if we only augment using highest gain paths, then no flow
generating cycle may be created in Gf .

This will be immediate from the description below. After the GTR algorithm, by Lemma 3.9, we
have a fitting pair (f, µ). We will maintain a fitting pair throughout. In order to find a highest gain
path, we let S be the set of nodes that can reach t on a tight path. As long as it does not include any
excess nodes, we uniformly increase all labels µi for i /∈ S until a new tight arc entering S appears.
Note that this change does not affect γµij if i, j /∈ S or if i, j ∈ S.

Thus, we obtain a tight path P from an excess node to t. We send δ > 0 amount of relabelled
flow along P ; that is, if ij ∈ P , then we increase fij by δµi so that fµij increases by δ. Note that it
is immediate that no flow generating cycle may appear: (f, µ) remains a fitting pair after the flow
augmentation.

A remarkable difference compared to the SSP algorithm is that while we modify the labelling in
order to find the augmenting path, the relabelled flow itself is changing: namely, fµij decreases if µi
increases. Thus, even though we may see high excesses at the beginning of an iteration, this may
become arbitrarily smaller by the time an augmenting path is identified.

3.2.6 The Fat Path Algorithm

The first polynomial time combinatorial algorithms (two of them) were given by Goldberg, Plotkin
and Tardos [5]. One of these, the Fat Path Algorithm, is a natural adaptation of the Edmonds-Karp
scaling to the generalized flow setting.

The algorithm comprises scaling phases with a parameter ∆ that decreases at the end of every
phase by a factor 2. Inside the ∆-phase, the algorithm sends ∆ units of relabelled flow on a highest
gain ∆-fat path, that is, a path that has residual relabelled capacity at least ∆. Algorithm 5 can be
modified to find such a path by ignoring all arcs in the residual graph that have relabelled capacity
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Algorithm 5 Onaga’s Algorithm

Input: Graph G = (V,E), sink t ∈ V , node demands b : V \ {t} → Q, gain factors γ : E → Q>0,
initial feasible solution f0 to (3.1).

Output: A generalized flow of maximum value.
1: f ← f0.
2: Cancel all flow generating cycles using the GTR algorithm.
3: Obtain a labelling µ that fits f .
4: repeat
5: R← {i ∈ V : ∇fi > bi}. . excess nodes
6: S ← {i ∈ V : ∃ a tight path from i to t in Ef}.
7: while S ∩R = ∅ do
8: α← max{γµij : ij ∈ Ef , i /∈ S, j ∈ S}.
9: µi ← αµi for all i /∈ S.

10: S ← {i ∈ V : ∃a tight path from i to t in Ef}.
11: Select a tight path P from a node r ∈ R to t.

12: δ ← min
{
∇fµr − bµr ,min

e∈P∩
←
E
fµe
}

. Send δ units of relabelled flow on P .

13: until ∇fi = bi for all i ∈ V \ {t}.
14: return f .

< ∆; note that the residual capacities may decrease during the label changes. We omit the precise
description here.

An additional difficulty is that we may create new flow generating cycles. Thus, the algorithm
repeatedly needs to call the GTK subroutine at the beginning of every ∆-phase; it can be shown that
the total increase of the relabelled excess remains bounded by O(m∆).

3.3 A strongly polynomial algorithm

The paper [5] was followed by a number of weakly polynomial algorithms. Among them, the best
running times are the O(m1.5n2 log(nB)) interior point method by Vaidya [20]; and the O(mn(m +
n log n) logB) combinatorial algorithm by Radzik [16]. See Shigeno’s survey [17] for an overview.
The first strongly polynomial was given in 2014 [22] in time O(n3m2). We now outline much simpler
algorithm in [11] that runs in time O(mn(m + n log n) log(n2/m)) for the uncapacitated formulation
(3.1).

3.3.1 Abundant arcs and plentiful nodes

Lemma 2.4 easily extends to the generalized flow setting, using the flow decomposition for generalized
flows. We define the total relabelled excess as

Ex(f, µ) :=
∑

i∈V \{t}

max {∇fµi − b
µ
i , 0} (3.4)

Lemma 3.10. Let f be feasible to (3.1), and let (f, µ) be a fitting pair. If fµij > Ex(f, µ), then,

γµ
∗

ij = 1 must hold for every optimal solution µ∗ to (3.3).

Such an arc will be called an abundant arc w.r.t. the pair (f, µ). Once we find a fitting pair with
such an arc (i, j), we can reduce the instance by contracting (i, j). As in Orlin’s algorithm, our goal
will be to find an optimal solution to the dual (3.3). Once an optimal dual is found, we use Lemma 3.8
to compute a primal optimal solution to (3.1).

The contractibility of abundant arcs was already used in [16]. The main difficulty is that in the
natural weakly polynomial algorithms such as the Fat Path algorithm, no proof is known for the
existence of an abundant arc. E.g. in the Fat Path algorithm, the total relabelled excess can be
Θ(m∆); but it could be possible that the relabelled flow remains smaller on every arc throughout the
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algorithm. In [22], a new scaling variant, called continuous scaling was used to overcome this problem.
In what follows, we describe the algorithm in [11].

Let us say that a node i is plentiful, if |bµi | > 2n2. The following lemma follows easily from
Lemma 3.10, by looking at the arcs in δ−(i) if bi > 0, or the arcs in δ+(i) if bi < 0.

Lemma 3.11. Let (f, µ) be a fitting pair such that f is feasible to to (3.1). Assume further that
Ex(f, µ) ≤ 2n. Then, if a plentiful node exists, then (f, µ) admits an abundant arc.

Our goal will be to obtain an abundant arc using this lemma. While Onaga’s algorithm simul-
taneously maintains feasibility and fitting pairs, these two properties appear to be incompatible for
polynomial time algorithms. E.g., the Fat Path algorithm needs to relax the fitting property and may
create flow generating cycles in every scaling phase. The algorithm in [22] also maintains feasibility
and gives a ∆-relaxation of the notion of fitting pairs.

Safe labellings A key trick in [11] is to maintain the fitting property but relax feasibility instead.
Throughout the algorithm, we work with a fitting pair (f, µ), but f may have some nodes i ∈ V \ {t}
with ∇fi < bi. Without any further conditions, such a flow is not very helpful, e.g. Lemma 3.10
cannot be extended even if we take the amount of violations into account.

Our additional requirement is that µ must be a safe labelling, meaning that there exists a feasible
solution g to (3.1) that fits µ. Given a labelling µ deciding safety reduces to a a standard flow problem
- one can use Hoffman’s theorem(Theorem 1.4).

We need another property of standard flows, known as the linking property. We leave the proof as
an exercise.

Theorem 3.12. Consider a directed graph G = (V,E), and p, b : V → R, p ≤ b. Assume there exists
a (standard) flow f ≥ 0 such that ∇f ≥ p, and there exists another flow f ′ ≥ 0 with ∇f ′ ≤ b. Then,
there exists a flow f ′′ ≥ 0 that simultaneously satisfies p ≤ ∇f ′′ ≤ b.

When applied for the relabelled flows, we obtain the following:

Lemma 3.13. Let (f, µ) be a fitting pair such that µ is a safe labelling and f ≥ 0. Then there exists
a g ≥ 0 that is feasible to (3.1) such that g fits µ, and Ex(g, µ) ≤ Ex(f, µ).

3.3.2 The algorithm

Invariants Nodes with positive and negative demands will play different roles. We let

V + := {i ∈ V \ {t} : bi > 0}, V − := {i ∈ V \ {t} : bi < 0}.

Throughout the algorithm, we maintain a fitting pair (f, µ) satisfying the following properties

• The labelling µ is safe.

• The relabelled flow fµ is integer valued.

• For every node i ∈ V \ {t}, ∇fµi − b
µ
i ≤ 2.

• For every node i ∈ V −, ∇fµi − b
µ
i > −1.

Note that the lower bounds are only imposed for V −. The integrality property is remarkable in the
context of generalized flows. Due to the gain factors, this problem is inherently non-integral; e.g.
finding an integer valued generalized flow is an NP complete problem.
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Initialization Let us assume that we have some fitting pair (f̄, µ̄) with f̄ feasible to (3.1) to start
with. Assumption 3.6 provides a feasible solution. We could cancel all flow generating cycles using the
GTK subroutine and obtain a label µ̄ fitting the flow f̄ at this point using Lemma 3.9. The algorithm
[11] avoids using GTK via a two-phase simplex type approach.

At this point, µ̄ is safe as testified by f̄ . To obtain the integrality of the relabelled flow as well as
the upper and lower bounds on the excess, we first set µ := αµ̄ such that 0 ≤ ∇f̄µi − b

µ
i ≤ 1 holds for

every i ∈ V \ {t}. Now the standard flow g̃ = f̄µ satisfies that bµi ≤ ∇g̃ ≤ bµi + 1 for all i ∈ V \ {t}.
Using the well-known integrality of the flow polyhedron, there must exists an integer flow g ≥ 0 such
that

bbµi c ≤ ∇g ≤ db
µ
i e+ 1 ∀i ∈ V \ {t}

Now, defining fij := µigij will provide a flow that fits µ, fµ is integral, and −1 < ∇fµi − b
µ
i < 2 for all

i ∈ V \ {t}.

Finding a plentiful node Algorithm 6 provides the subroutine for finding a plentiful node. Once a
plentiful node is obtained, we use Lemmas 3.13 and 3.11 to obtain an abundant arc. We then contract
such an arc and thereby reduce the size of the instance. We terminate once all demands are bi = 0.
In this case, f = 0 will be an optimal primal solution along with any labelling feasible to (3.3). As
in Orlin’s algorithm, we expand this dual solution to a dual optimal solution in the original graph.
Lemma 3.8 then returns an optimal primal solution to (3.1).

Consider now (f, µ) satisfying the above invariants. We wish to update f by augmenting on a
highest gain path. We use a modification of Onaga’s algorithm, however, there is a crucial difference
in how the labels are updated.

Besides t, the sink set Q comprises all nodes with ∇fi < bi; we wish to find an augmenting path
ending in Q. We let S denote the set of nodes that can reach Q on a tight path. Once S includes a
node r with ∇fµi ≥ bµi + 1, then we send 1 unit of relabelled flow from r to Q. Note that integrality
plays a vital role here: it ensures that the residual path has enough capacity to send a full unit. This
flow update maintains integrality.

Algorithm 6 Produce-Plentiful-Node

Input: Fitting pair (f, µ) with fµ ∈ ZE+, in a network with b 6= ∅.
Output: Fitting pair (f, µ) with fµ ∈ ZE+, such that there exists at least one plentiful node in V .
1: while there are no plentiful nodes do
2: Augmentation part of the iteration
3: Q← {t} ∪ {j ∈ V \ {t} : ∇fµi < bµi }.
4: S ← {i ∈ V : ∃ a tight i-Q-path in Ef}.
5: while there exists a node i ∈ S with ∇fµi ≥ b

µ
i + 1 do

6: Augment fµ by sending 1 unit from i to a vertex in Q along tight arcs.
7: Update Q and S.

8: Label update part of the iteration
9: α0 ← mine∈δ−(S) 1/γµe .

10: Select the largest α ≤ α0 such that ∇fµi ≤ αbµi + 2 for all i ∈ V \ {t} or until |bµi |α ≥ 2n2 + 1
for some i ∈ V \ {t}.

11: fij ← fij/α for all i, j ∈ S.
12: µi ← µi/α for all i ∈ S.

13: return (f, µ).

Assume now S does not contain any node with large relabelled excess. In Onaga’s algorithm, we
multiplied all labels outside S to obtain a tight arc entering S. We now do the opposite: we divide
all labels inside S by a factor α > 1 (including the label µt). Further, we also change the flow inside
S: for every arc ij with i, j ∈ S, we divide fij by the same factor α. (This is the most important
difference compared to [22]).
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Note that such an update maintains the same relabelled flow values fµe for all arcs. Indeed, fe = 0
if e ∈ δ−(S) ∪ δ+(S) (why?). Thus, flow integrality is maintained.

However, the excess of a node may change. Since the relabelled flow is unchanged, ∇fµi remains
the same for all i ∈ V \ {t}. However, for i ∈ S, the relabelled demand bµ is divided by a factor α.

This flow update has opposite effect for nodes in V + and in V −. For i ∈ V +, the relabelled demand
increases, and therefore the relabelled excess decreases; this is the reason why we must allow violation
of feasibility. For i ∈ V −, the relabelled demand decreases and thus the relabelled excess may grow.

The value of α is selected as the largest value such that the properties γµe ≤ 1 for all e ∈ δ−(S),
and that ∇fµi ≤ bµi + 2 for all i ∈ V − are maintained. We further cap the value of α when a new
plentiful node would appear.

3.3.3 Analysis

From the discussion above, we already see that most invariants are maintained in the path augmen-
tations step: (f, µ) remains a fitting pair, the excesses of the nodes remain upper bounded by 2, and
the excesses of nodes in V − remain lower bounded by -1. However, the key safety property must be
showed.

Lemma 3.14. Throughout Algorithm 6, µ remains a safe labelling.

Proof. The labelling µ is only changed when we divide all values in S by α. Let µ′ be the updated
label such that µ′i = µi if i /∈ S and µ′i = µi/α if i ∈ S.

Let g ≥ 0 be the flow before the update that testified the safety of µ, that is (g, µ) is a fitting
pair and ∇gi ≥ bi for all i ∈ V \ {t}. Note that g may not fit µ′, since ge > 0 could be possible for
e ∈ δ+(S). These are arcs that can be tight w.r.t. to µ but not w.r.t. µ′.

However, we can combine f and g into a flow h that is feasible and fits µ′ as follows. We let

hij :=


fij if i, j /∈ S,
gij if i, j ∈ S,
0 if ij ∈ δ−(S) ∪ δ+(S).

We leave it as an exercise to verify that h is feasible and fits µ.

The key of the running time analysis is showing that a small number of augmentations leads to
obtaining a plentiful node.

Lemma 3.15. Within O(n3) path augmentations, Algorithm 6 finds a plentiful node.

Proof. First, assume that V − = ∅. In this case, the label updates can only decrease the excess of any
node. Since the initial excess is < 2, there can be just a single augmentation starting from any node
i ∈ V \ {t}. Thus, within O(n) augmentations, we will have ∇fi < bi + 1 for every i ∈ V \ {t}. At
this point, the algorithm encounters S = V , and we select an α such that |bµi |α = 2n2 + 1, that is, a
new plentiful node is created.

Let us now assume that V − 6= ∅. We consider two potentials

Φ :=
∑
i∈V −

∇fµi − b
µ
i , Ψ :=

∑
i∈V −

−bµi .

Clearly, once Ψ ≥ 2n3, one of the nodes in V − must be abundant. Let us now track these two
potentials throughout the algorithm. Ψ may change at the label update steps, and can only increase.
Further, at every label update step, Ψ increases by the same amount as Φ increases.

Let us call a path augmentation helpful, if it starts from a node r ∈ V − and ends in a node
q ∈ Q \ V −; all other augmentations are called unhelpful. The number of unhelpful augmentations is
bounded by 2n. Indeed, a node outside V − can serve as a starting point at most once, and a node in
V − can serve as an endpoint at most once (why?).

Throughout, we have −n ≤ Ψ ≤ 2n due to upper and lower bounds on the excesses. In every
helpful augmentation, Ψ decreases by one. As argued above, the total increase in Ψ equals the total
increase in Φ; and Φ can increase by at most 2n3 until a plentiful node is found. Thus, the total
number of helpful path augmentations is bounded by 2n3 + 3n.
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Improvements One can modify the algorithm so that a path augmentation takes the same time
O(m+ n log n) as Dijsktra’s algorithm. Since we terminate in ≤ n− 1 contraction, this would yield a
running time bound O(n4(m + n log n)). By definining the plentiful threshold differently, the O(n3)
bound in the lemma can be decreased to O(nm), leading to an improved O(n2m(m+ n log n)).

Further, [11] gives an amortized analysis over all contraction phases that yields the running time
O(mn(m+ n log n) log(n2/m)).
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